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Figure V-4. Log Iĵ  vs. log f for Electrode A at a = 
0.685 mm 137 
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I. INTRODUCTION 

Recent technological, environmental, and legal developments have 

created a need for analytical determinations at concentrations far below 

those previously encountered. This requirement for methods having In

creased sensitivity has been a major driving force in the development 

of instrumental analytical methodology. Such research has also been 

aided immeasurably by the concurrent development of improved electronic 

devices and techniques of signal processing. 

Electroanalytical techniques possess distinct advantages for 

many trace-level analytical determinations. Among the most useful 

electroanalytical methods is voltammetry. In voltammetry, a working or 

indicating electrode is maintained at a potential by means of a 

potentiostat. The potentiostat also monitors the current passing through 

the working electrode, which is directly related to the concentration 

of electroactive species being oxidized or reduced at the electrode. 

The relationship between the current at the working electrode and 

the concentration of electroactive species, or analyte, in the bulk 

solution may be derived from fundamental electrochemical considerations. 

The relationship of electrode current to the flux of electroactive 

species at the electrode is given by Equation I-l. 

I = nF(dN/dt)eig2 (I-l) 

The flux, (dN/dt)ĝ gg, results from the processes of migration, convec

tion, and diffusion. Solutions used in voltammetry generally contain, 

in addition to the analyte, a large excess of an inert or supporting 
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electrolyte, which serves to reduce mlgratlonal flux to a negligible 

value. Mass transport in voltammetry is thus restricted to the 

processes of convection and diffusion. 

Convection, which results from physical displacement of solution, 

is far more efficient than diffusion as a means of mass transport. 

Diffusion is the predominant mode of flux in voltammetry only in the 

thin layer of solution which adheres to the surface of the electrode 

and remains stationary, relative to the position of the electrode. 

Since diffusion is the only mode of mass transport in this layer, the 

flux of electroactive species to the surface of the electrode may be 

described by Pick's Law, the basic relationship describing diffusional 

processes, which is given in Equation 1-2. The flux, (dN/dt)̂ ^̂ ,̂ is 

expressed in mmoles sec ̂  for (dC/dx)̂  ̂in M cm 

According to the model developed by Nernst (1), the concentration 

gradient at the surface of the electrode, (dC/dx)̂ _Q, may be approximated 

by a linear function over the region from x = 0, the surface of the 

electrode, to x = 6, the point at which convection becomes the dominant 

mode of mass transport. This mathematical approximation for the 

concentration gradient is given in Equation 1-3. The variable 6 

represents the thickness of the diffusion layer. 

Equations I-l, 1-2, and 1-3 may be combined to give the basic equation 

for voltammetry, shown in Equation 1-4. In Equation 1-4 and succeeding 

(4H/4t)elec = AD(dC/dx)̂ Q̂ (1-2) 

(dC/dx)̂ Q̂ = (Ĉ  - C*)/6 (1-3) 
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equations, the current, I, is expressed in mA for concentrations, 

and C®, expressed in M. 

I = NFAD(C'' - C®)/6 (1-4) 

In cases where the electrode is operated at a potential such that the 

concentration of the substance being oxidized or reduced becomes es

sentially zero at the surface of the electrode, the electrode current 

assumes a maximum value. The current in this case is referred to as 

the limiting current, Î , and is given in Equation 1-5. 

I, = nFADĈ /6 (1-5) 
i 

Wherever possible, analytical determinations using voltammetry are 

performed under conditions described by Equation 1-5. It will be noted 

that Î  is proportional to Ĉ , the concentration of the analyte in the 

bulk solution. This proportionality forms the basis for all analytical 

applications of voltammetry. Equation 1-5 is frequently given in an 

alternate, simplified form, shown in Equation 1-6. 

I. = nFAk (1-6) 
i m 

The variable k In Equation 1-6 is referred to as the "mass transfer 
m 

coefficient" and is frequently encountered in the literature; k̂  is 

equal to the quantity D/6 in Equation 1-5. 

It must be emphasized that Equations 1-2 through 1-6 apply only 

to electrochemical reactions whose rate of electron transfer is fast 

compared to the rate of mass transport to the surface of the electrode. 

Such reactions are referred to as being reversible. Except as noted. 
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the electrochemical reactions described in this dissertation are 

reversible. 

Consideration of Equation 1-5 suggests possible techniques which 

may be used to effect an increase in the sensitivity of voltammetric 

determinations. To obtain the greatest sensitivity, the analytical 

variable, must be maximized for a given concentration of analyte, 

Ĉ , contained in the sample. Elementary algebra shows that the limiting 

current will increase for an increase in the values of n, F, A, or D, 

or for a decrease in the value of 6. Faraday's constant, F, is a 

fundamental physical constant and cannot be varied. The number of 

electrons involved in the reaction, n, and the diffusion constant of the 

electroactive species, D, are determined by the analyte and are therefore 

also fixed. Thus, the only factors which may be varied in order to ef

fect an increase in 1̂  are A and Ô. 

Increasing the area of the working electrode will result in an 

increase in the limiting current observed for a given concentration of 

analyte. However, unwanted background currents also increase in direct 

proportion to the area of the electrode. Such background currents 

result from breakdown.of the supporting electrolyte and from surface 

reactions of the electrode material itself. The detection limit in 

voltammetric analysis ultimately depends upon the signal-to-noise ratio 

of the analytical variable, to these background currents. Since 

both the numerator and denominator of the signal-to-noise ratio are 

directly proportional to the surface area of the electrode, a change in 

this area will not effect an increase In the sensitivity of voltammetric 

analyses. 
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From the preceding argument. It is evident that reduction of the 

thickness of the diffusion layer is the only method which may be used 

to obtain lower detection limits in voltànmetry. The value of 6 is 

inversely related to any motion of the electrolyte with respect to 

the electrode» and any method of achieving such motion will result in 

a decrease in 6 and a consequent increase in voltammetrlc sensitivity. 

Motion of the electrolyte past a stationary electrode has been 

used to effect a reduction in the value of ô. The most obvious method 

of achieving this motion is to stir the electrolyte, into which the 

stationary electrode is immersed. Experimentation shows that repro

ducible hydrodynamic conditions are not readily obtained with such 

stirring, and the limiting currents observed are therefore unstable. 

Stirring has found considerable application in anodic stripping volt-

ammetry, however, in which short-term variations in the limiting cur

rent for deposition may be averaged out over the comparatively long 

period of deposition. 

A second method of moving the electrolyte past the electrode 

surface is to place the electrode in a flowing stream. The most familiar 

application of this principle is the tubular electrode. Introduced by 

Blaedel, et al. (2). The hydrodynamic conditions prevailing in the 

tubular electrode are those of laminar flow and may be evaluated 

mathematically, resulting in an explicit expression for 6 as a function 

of the experimental parameters. Blaedel, et al. substituted this expres

sion into the basic voltammetrlc equation and obtained the equation re

lating the limiting current observed at a tubular electrode to the length 

of the electrode and the volume flow rate. 
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5 
= 5.24 X 10̂  nD 2/3̂ 2/3̂ y3gb (1-7) 

The principle of placing the electrode in a flowing stream also forms 

the basis for flow-injection analysis, which will be discussed later in 

this work. 

Motion of the electrode through a stationary electrolyte also has 

been used to increase the sensitivity of voltammetric determinations. 

The rotating disc electrode (RDE), the most frequently used solid 

voltammetric electrode, makes use of this principle. The RDE is a 

circular disc which rotates about an axis passing through its center 

and perpendicular to its surface. The hydrodynamic equations pertaining 

to laminar flow in this system were first evaluated by Levich (3). He 

also derived the basic voltammetric equation for the RDE, shown in 

Equation 1-8. 

Relative motion of an electrode through an electrolyte may also be 

effected by vibration of the electrode. Although vibrating electrodes 

have found comparatively few applications in voltammetry, they offer 

certain advantages which have not been fully exploited in electro-

analytical chemistry. This dissertation explores new applications of 

vibrating wire microelectrodes to voltammetric analysis and uses 

the basic advantages of vibrating electrodes to extend the usable range 

of electroanalytical'determinations to the lowest levels yet achieved. 

The hydrodynamic behavior of vibrating wire electrodes is also studied 

in greater detail than heretofore possible. The design and operation of 

= 0.62nFAD (1-8) 
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original electronic circuitry and instrumentation v̂ ich has made these 

investigations possible is explained. Equations describing the behavior 

of vibrating electrodes in flow-injection analysis are derived and 

experimentally verified, and their applicability to similar systems 

using rotating disc electrodes is evaluated. 
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II. LITERATURE REVIEW 

A. Introduction 

The literature pertaining to electrochemical applications and 

fundamental studies of solid vibrating electrodes is reviewed here. 

This review covers all articles on this topic which have appeared in the 

literature from 1948 through 1979. It is noteworthy that almost all 

work with vibrating electrodes has been performed outside the USA; of 

81 references reviewed here, only 6 are from the USA. 

The paucity of electrochemical work performed with vibrating 

electrodes in the USA is most likely a result of 2 factors. First, the 

technique is somewhat empirical and is not amenable to mathematical 

treatment. Second, the method is extremely inexpensive. Both these 

factors combine to make work with vibrating electrodes unattractive to 

many American researchers. 

Delahay (4) in 1954 briefly discussed vibrating electrodes in his 

well-known text on electrochemistry. This reference provided the stimulus 

for the present work. The only true review article which has appeared 

to date on the topic of vibrating electrodes is that of Facsko (5), 

which is in German. Facsko*s article is a thorough review of all work 

which had appeared in the literature up to 1961. The present work is 

the only review of vibrating electrodes to appear since that time and is 

the first review of this topic to appear in the English language. 
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B. Analytical Applications 

Vibrating electrodes were first used In voltammetry by Harris and 

Llndsey (6) In 1948. They obtained reproducible polarograms using a 

Pt mlcroelectrode vibrated at 100 Hz and at "an amplitude considerably 

greater than Its linear dimensions." This article is the first reference 

to vibrating electrodes in electrochemistry. Roberts and Meek (7) 

used a dual Pt electrode, vibrated by a speaker, for the polaro-

graphic analysis of alkyl peroxides. The dual electrode was used to 

minimize the effects of fouling. Linear calibration curves were ob-

-4 -3 
talned over ranges of 2 x 10 M to 2 x 10 M for the reduction of 

Cd̂  ̂and 1 x 10 ̂  M to 1 x 10 ̂  M for the reduction of ethyl peroxide. 

Dirscherl and Otto (8, 9) used a vibrating Pt electrode for the 

-4 reduction of 0̂  and the oxidation of I over a range of 1 x 10 M to 

1 X 10 ̂  M. The authors found that the limiting current for both 

reactions decreased for repeated voltammograms of the same solution. 

Concurrently with the decrease in the anodic current for the oxidation 

of I , the authors noted a corresponding Increase in the cathodlc 

current observed at potentials more negative than the I /Î  wave. 

This cathodlc current was attributed to the reduction of formed 

from the oxidation of I at the electrode during previous polarograms. 

The consumption of electroactive species by the vibrating Pt electrode 

was found to be 10 to 20 times more rapid than at a dropping mercury 

electrode, and the limiting currents observed both fov the oxidation of 

I and the reduction of 0̂  were found to decay according to a first-

order exponential relationship. 
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Oehme and Noack (10) studied the application of vibrating electrodes 

24- + 
to the reduction of Cd and T1 on amalgamated Ag and to the oxidation 

of ascorbic acid on Pt. Irreproducible results encountered in the 

2+ + 
analyses of solutions of Cd and T1 at higher concentrations were 

attributed to the accumulation of electrodeposited Cd and Tl; these 

difficulties were not found for the reduction of oxygen and aromatic 

nitro compounds, whose reaction products did not deposit on the electrode. 

Vlcek (11) applied vibrating electrodes to polarographic studies of 

CO„(CO)Q. Leont'ev and Fedotov (12) used vibrating Pt electrodes for 
L o 

3+ 
polarographic analyses of solutions containing Fe and HgOg. In both 

cases, the limiting currents observed at the vibrating electrode were 

3 to 3.5 times larger than those observed at a stationary electrode. 

Kalvoda (13) analyzed solutions containing micromolar quantities of 

Au(III), Ag(I), and Hg(I) using oscillographic polarography with a 

vibrating Pt electrode. 

Facsko and Poraicu (14) found that the limiting currents for the 

oxidation of Fe(CN)g' at vibrating Pt and Ni electrodes were propor

tional to concentration. The limiting current increased tenfold when 

the electrode was vibrated. The same authors found similar results for 

the reduction of Ce(IV) at Pb and Pt electrodes and for the oxidation 

of T1(I) at Pt electrodes (15). Pint and Flengas (16) obtained polaro-

2+ 2+ 2+ 
grams for the reduction of Cu , Pb , and Cd in aqueous solution at 

4* W electrodes and for the reduction of Ag at Pt electrodes in a KNÔ -

NaNOg melt. Linear calibration curves were given for Pb̂  ̂at 2 x 10 ̂  M 

to 1 X 10 ̂  M and for Aĝ  at 5 x 10 ̂  to 5 x 10 ̂  mole percent. Magjer 

and Branlca (17) employed a stationary glassy-carbon electrode situated 
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next to a vibrating, conically perforated disc for the determination of 

Zn, Cd, Pb, and Cu in seawater using differential pulse anodic stripping 

voltammetry. The detection limit for Cd was given as 0.1 ng L and 

analyses at the 1 ng L ̂  level were demonstrated. Analyses for Zn, 

Pb, and Cu at the 100 ng L ̂  level were also illustrated. The 

glassy-carbon disc was plated in situ with a Hg film obtained from the 

reduction of 4 x 10 ̂  M HgClg added to the seawater sample. Finally, 

Moorhead, et al. (18) used resonant vibrating wires for the reduction 

of Fe(CN)g at W and for the reduction of 10̂ , catalyzed by Î , at Pt 

electrodes. Linear calibration curves were obtained in both cases. 

Vibrating electrodes were frequently employed in amperometric 

titrations, particularly in early work. Rosenberg, et al. (19) used 

a vibrating Pt electrode in the amperometric determination of cysteine 

and glutathione with AgNOg. The electrode responded to excess Ag"*" 

present after the endpoint. Harris and Lindsey used vibrating Pt 

2— 
electrodes in the titration of As(III) and SgOg with iodine, with the 

electrode responding to excess Ig (20). In a following article (21), 

the same authors used vibrating electrodes in the titration of As(III) 

and Sb(III) with KBrÔ . The electrode responded to Br2 which was 

formed from the reaction between excess BrOg, present after the end-

point, with Br formed during the reaction as a reaction product. 

Alimarin and Gallai (22) employed a vibrating electrode in the 

2+ 
titration of Fe with K2Ĝ 2̂ 7' ®̂y particularly emphasized the 

applicability of the technique to titrations using small volumes, e.g., 

2+ 
1 to 2 mL. The electrode responded to Fe present prior to the end-

point; the expected linearity was observed between Î  and the 
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2+ concentration of Fe . The vibrating wire electrode was found to be 

only half as sensitive as a rotated wire electrode, likely due to the 

small amplitude of vibration used in the experiment. Jensovsky (23) 

used a vibrating Pt electrode in percuprimetric (sic) titrations, with 

the electrode responding to excess Cu(III) present after the endpoint. 

A well-defined polarographic wave was obtained, with the limiting cur

rent proportional to the concentration of Cu(III) from 2 x 10 ̂  M 

to 1 X 10 ̂  M. 

Sarkar and Siyaraman (24) used a vibrating Pt electrode for the 

amperometric titration of cysteine; cystine was also determined fol

lowing prereduction to cysteine. The titrant was AgNÔ , with the 

electrode responding to excess Ag . Titrations were performed using 

total volumes as small as 0.8 mL. Tikhomirova (25) performed ampero

metric titrations of As(III) with Ig, using a vibrating Pt electrode 

which detected excess Ig. She also used the vibrating electrode in 

2+ 
an amperometric titration of Fe with KMnÔ . The electrode was held at 

a potential of + 0.5 V vs. SCE and responded to excess MnÔ  present 

after the endpoint. A measurable current was observed in solutions con

taining 10 ̂  M MnÔ . Although the reduction of MnÔ  under these condi

tions was irreversible, the limiting current was observed to increase 

with increased amplitude of vibration. The vibrating wire electrode 

was found to be 1.5 to 2 times as sensitive as the rotated wire 

electrode. 

Vibrating electrodes have found use in the electrochemical determina

tion of dissolved oxygen for studies of respiratory oxygen demand. 

KQster (26) applied a vibrating Ft electrode to studies of respiration 
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of plants. The electrode was calibrated by addition of known volumes of 

air-saturated, buffered electrolyte Into a cell of constant volume, 

simultaneously displacing an equivalent volume of deaerated electro

lyte. A mathematical expression was derived for the concentration of 

Og following each such addition. The calibration curves obtained 

showed significant deviations from linearity; the limiting currents 

observed at higher concentrations of 0̂  were lower than the expected 

values calculated from linear extrapolation of data obtained at lower 

concentrations. 

Liese, et al. (27) employed a vibrating Au electrode for studies 

of mitochondria. The electrode used was a Au disc, approximately 1 mm 

in diameter, which was sealed into a glass tube with epoxy. The electrode 

was coated with collodium for protection against fouling from proteins 

in the sample. This work is the only reference to vibrating Au electrodes 

in the literature. 

In the USSR, Shurukhln, et al. (28) applied a vibrating Ft electrode 

to studies of respiratory activity of enzyme preparations. Rudlchenko 

and Rudlchenko (29) employed a vibrating Ft electrode to determine the 

respiration rates of mitochondria ̂  vitro and ̂  vivo. 

Fasswaters (30) investigated the application of vibrating electrodes 

to flowing systems. Using a Ft disc electrode, he studied the effect of 

flow rate on the limiting current observed for the oxidation of 0.01 M 

Fe(CN)g in the flowing stream. His data show that the limiting current 

was less dependent on flow rate when the electrode was vibrated at 80 Hz 

and 0.05-cm amplitude than when the electrode was stationary. Fass

waters drew the following conclusions from his work: 
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"1. Mass transport is not increased using a vibrating 
electrode when the flow velocity exceeds the electrode 
linear velocity. 

2. ... concurrent use of two forced convection systems 
to increase mass transport is superfluous. 

3. ... as the vibration frequency increases, the effect 
of changes in the flow rate decreases. 

4. Thus, while there is little advantage in using a vi
brating electrode at flow velocities exceeding the 
electrode velocity, at lower velocities the moving 
electrode enjoys the advantage of increased analytical 
sensitivity with minimal error introduced by undetected 
flow velocity changes." 

No data were presented for the application of vibrating electrodes to 

flow-injection analysis, and all experiments were performed under 

steady-state conditions. Equations relating the steady-state current 

to the oxidation of Fe(CN)g in this system were not derived. 

C, Fundamental Studies 

Popov and Rybyanets (31) found that the limiting currents observed 

using a planar electrode vibrated perpendicular to its surface were 

2 to 3 times larger than those obtained using the same electrode 

vibrated at the same frequency and amplitude but parallel to its sur

face. They concluded that the motion of liquid around the electrode 

was turbulent in the case of perpendicular vibration and laminar in 

the case of parallel vibration. The chemical polarization for the 

2+- 2+ reduction of Cd and Cu was not changed. Facsko and Radoi supported 

this latter conclusion in studies of the passivation of Fe electrodes 

(32). Vibration Increased the critical current density for passiva

tion but had no effect on the thermodynamic aspects of the passivation. 



www.manaraa.com

15 

Radol (33) stressed the need for reproducible hydrodynamic conditions 

in all applications of vibrating and rotating wire electrodes. Gibert 

and Ângelino (34) compared vibration of a spherical electrode to pulsa

tion of the solution past a stationary sphere. The limiting currents 

observed for the 2 cases, using the same sphere, agreed to within 10% 

for corresponding vibrational parameters. Ross and Aspln (35) found 

that surface roughness affected the rate of ionic mass transfer only 

at low vibrational velocities. 

Podesta, et al. investigated the nature of mass transport to a 

vibrating disc electrode (36). At low vibrational amplitudes, less 

than 0.55 mm at 50 Hz, solution flow was observed only in the region 

actually traversed by the disc. At higher amplitudes, streaming of 

the solution from the electrode to the bulk of the solution was noted. 

Also, the limiting current contained an alternating-current (AC) 

component, whose frequency was that of the vibration (50 Hz), with an 

amplitude equal to 1.5% of the average limiting current. The oscillogram 

shown in the article Indicated that a significant component was also 

present at the second harmonic, 100 Hz. The limiting current was pro

portional to the square root of the Schmidt number (Sc) over the range 

of 852 to 19218. 

The effects of vibrational amplitude and frequency on the rate of 

mass transfer have been studied by many investigators. The results of 

these studies are summarized in Table II-l. The numerical values for 

the dependence of mass transport upon frequency, amplitude, and vibra

tional Reynolds number represent the exponential dependence of k̂ , 

or Sĥ  on each of these parameters. Verbal descriptions of these 
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relationships are given in cases where no exponential dependence was 

noted. 

Table II-2 summarizes equations given in the literature which re

late the limiting current or mass transport rate observed at various 

types of vibrating electrodes to the vibrational amplitude, a, and 

frequency, f. The equations are given in the original form. Variables 

are designated.in accordance with the nomenclature employed in this 

dissertation. References from the Indian literature use the dimension-

less parameter to characterize the mass transport. is related 

to more familiar parameters by Equation II-l. 

The vibrational Reynolds number, which is a dlmenslonless quantity used 

to characterize the hydrodynamics of vibrating bodies, is given by 

Equation II-2. 

° Vavsdg/v (11-2) 

The vibrational Sherwood number, Sĥ , is a second dlmenslonless quantity 

and is used to characterize the mass transport to a vibrating electrode. 

It is related to the limiting current and diameter of the electrode by 

Equation II-3. 

I = (nFADĈ /d̂ )Sĥ  (II-3) 

By comparison of Equations II-3 and 1-5, It may be seen that the vibra

tional Sherwood number is given by the quotient of the diameter of the 

electrode and the thickness of the diffusion layer: 
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Table II-l. Exponential dependence of mass transport upon vibrational parameters 

Mode of Dependence of M.T.̂  
Electrode vibration on a, f, Rê  Range studied Ref. 

Ni disc 

Ni disc 

Normal 

Normal 

Rê , proportional 

Re , 0.88 
V 

a: 
f: 

Re 

0-2.5 mm 
0-100 Hz 

0.88„ 0.5 Sc 

35 

35 
10000-30000 

Pt disc 

W, Pt 
disc 

Normal 

Normal 

a: 0.75 
f: 0.75 
Rê : 0.75 

f: linear 
increase 

a: 0.0635-0.55 ram 
f: 20-100 Hz 

a: 2.5 mm 
f; 0-3 Hz 

36 

16 

Pt disc Angular 
transverse 

f: 0.64 a: 
f: 

0.25 mm 
20-110 Hz 

29 

Cu, steel 
platê  

Ni plate 

Normal 

Normal; 
parallel 

a: increases 

a: 0.9 (normal) 
a: 0.6 (parallel) 

a: 
f: 

not noted 
0-100 Hz 

a: 0-0.9 mm 
f: 100 Hz 

37 

31 

.̂T. = mass transport. 

decreased sporadically at f > 95 Hz. Attributed to cavitation for v̂ ^̂  >17.8 cm sec 

M̂ass transport was further enhanced at mechanical resonance of plate. 
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Table II-1. Continued 

Electrode 
Mode of 
vibration 

Dependence of M.T.̂  
on a, f, Re 

Cu plate 

Cu platê  

Pt sphere 

Ni sphere 

Normal; 
parallel 

Parallel 

Re : 0.74 (normal) 
Rê : 0.56 (parallel) 

a: 0.42 
f: 1.09 

a; 1.0 (theoret.) 

Re : 0.538 
V 

Cu, Steel 
cylinder 

Cu 
cylinder 

Cu 
cylinder 

Transverse 

Axial 

Angular 
transverse 

a: 0.62 
f: 0.62 
Re : 0.62 

V 

Re : 0,62 (Re < 150) 
V V 

Re : 0.87 (Re > 150) 
V V 

f: 0.57 

Range studied Ref. 

a; 1.3-19.88 mm 38 
f: 1.67-23.3 Hz 

a: 0-8 mm 39, 40 
f: 0-48 Hz 

a: 0-0.002 mm 41 
f: 82 kHz 

a: 0-24 mm 34 
f: 0.4-3.3 Hz 

a: 2.43-37.09 mm 42 
f: 1.67-15 Hz 

a: 0.54-7.7 mm 43 
f: 3.33-41.7 Hz 
Re : 18.27-959 
V 

8g: 0.01063- 44 
0.1452 radians 

f: 1.67-23.3 Hz 
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Table II-l. Continued 

Electrode 
Mode of 
vibration 

Dependence of H.T.' 
on a, f, Re Range studied Réf. 

Pt wire 

Pt wire 

Pt wire 

Axial 

Angular 
transverse 

Transverse 

f: linear to 40 Hz 
(at a = 0.9 mm); 
constant at f > 40 Hz 

a; linear to 0.4 mm 
(at f = 100 Hz); 
constant at a >0.4 mm 

a; 0.5 

a; Il incr. 33% from 
0.2 mm to 0.5 mm 

f; incr. 33% from 
50 Hz to 150 Hz 

a; 0-0.9 mm 
f: 0-120 Hz 

a: 
f: 

a: 
f: 

0-3.5 mm 
50 Hz 

0.2-0.5 mm 
50-150 Hz 

45 

8, 9 

22 

Pt wire 

Pt wire 

Axial 

Axial 

a; incr. with incr. 
a up to 4 mm 

a: increases; two 
linear regions. 
Transition at 
a = 0.6 mm 

a; 
f; 

a: 
f: 

0-4 mm 
50 Hz 

0-3.5 mm 
35 Hz 

25 

independent of a, f for all 4af >15.9 cm sec 
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Sĥ  = djà (II-4) 

D. Electrodeposltion and Electrosynthesis 

Facsko (46) reviewed applications of vibrating electrodes in the 

electrogravimetric determinations of Bi, Cu, Pb, Sb, and Zn. 

Vibrating electrodes have been used by several investigators in 

the electrodeposltion, electrorefining, and electrogravimetric determina

tion of Cu (31, 39, 47-56). Increases in the maximum allowable current 

density and in the current efficiency were stressed by Facsko and co

workers (47, 48, 51, 52, 54, 55). These increases resulted from the 

2+ 
increase in the mass-transport limited rate for the reduction of Cu 

ions relative to the rate for formation resulting from solvent 

breakdown. Electrodeposited Cu retained a microcrystalline character 

at higher current densities when deposited at a vibrating cathode than 

when deposited at a stationary cathode (54, 55). 

Other metals which have been electrodeposited onto vibrating 

electrodes include Bi (57), Cd (28), Cr (58, 59), Ni (58, 60), Pb as 

PbOg (61), Sb (62), and Zn (63, 64). In all cases, significant in

creases were noted in the limiting current density or in the maximum 

allowable current density. 

Facsko and Radoi used the vibrating electrode in internal elec

trolysis (49, 65, 66). A large, cylindrical cage of Pt gauze was used 

as the vibrating cathode, and a small, stationary Zn rod served as the 

anode. As a result of the vibration, the polarization of the cathode 

decreased, and the polarization of the anode consequently increased. 
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Table II-2. Equations from the literature î'i'lating mass transport 
to vibrational parameters 

Mode of 
Electrode vibration Equation Ref 

Disc Normal k = 0.00927Re 
m V 35 

Disc Normal Sh = 0.00118Re°'G8gc0.5 
V V 35 

Disc Normal = 0.07nFADl/2f3/4a3/4̂ 1̂/4j-l/42b 36 

Plate* Normal J' = 0.486Re"°'44(i + (L/B)"°*̂ ) 

Parallel 

 ̂ V 

= 0.437Rê °'2G(T 
38 

Spherê  Pulsation 
of sol'n. 

Sĥ Sc-1/3 = 0.624(Rey(app/DG)l/2)0'53G 

Sh = 0.711Re°"538 
V V 

34 

Spherê  Vibration 
of sphere 

Sĥ Sc"L/3 = 0.593(Rê (app/dg)̂ /̂ )°*̂ ®̂ 

Sh Sc"̂ 3̂ = o.661Re°'538 
V V 

34 

Cylinder Transverse J» = 0.41Re"0'38 
D V 42 

Cylinder Axial J' = 0.24Re"0'38 for Re <150 
D V V 

J' = 0.066Re"°*̂  ̂for Re >150 
D V V 

43 

Cylinder̂  Angular J' = 0.54Re"°'43 
D V 44 

transverse 
J' = 0.54Re"°'43 
D V 

L̂, Tp, and B designate length, thickness, and breadth of plate, 
respectively. 

Upper equation for (a /d ) < 150; lower equation for (a /d ) > 
150. PP ® PP ® 

R̂ê  = (2Ldg8gfp)/v, where L = length of electrode and 0g = 
angular swing of electrode in radians. 
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Cementation of the analyte at the anode therefore could not occur, and 

the internal electrolysis could be performed without a diaphragm. Thus, 

the time required for the electrolysis was decreased, and the maximum 

permissible concentration of analyte was increased. 

The vibrating electrode has also found application in the electro

plating industry (67-71). Khnykin and Ogol applied vibrating electrodes 

to the electrogravimetric analysis of nonferrous metals (72). 

Facsko and co-workers have investigated applications of vibrating 

electrodes to the electrosynthesis of ferricyanide (14), chromate (73), 

and permanganate (74). In each case, increases in the current effi

ciency were noted. 

E. Chronopotentiometry and Electrode Kinetics 

Rowe and Nyborg (41) used chronopotentiometry to study the reactions 

of Og and on spherical Pt electrodes vibrated at ultrasonic fre

quencies. They concluded that mass transport of 0̂  and resulted from 

the acoustic streaming induced by the vibration, Radoi used chrono-

2+ 
potentiometry at vibrating electrodes to study the reductions of Cu 

3+ 
(75, 76), Fe (76), and nitrobenzene and related compounds (77). The 

chronopotentiometric transition times observed for these reductions 

were studied as a function of the vibrational Reynolds number for the 

electrode. The transition time was smallest at stationary electrodes 

and Increased over a range of Rê  = 0 to 50. At approximately Rê  = 50, 

the transition time became infinite, which Radoi interpreted as indica

tive of the onset of turbulence. He also concluded that the concentra-
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tion overvoltage was eliminated at Rê  values greater than 50. A 

2+ 
Tafel plot for the reduction of Cu at an electrode vibrated under 

such conditions was presented (76). 

Vibrating electrodes have been applied to electrochemical studies 

21 
of heterogeneous kinetics. Hoover (60) studied the kinetics of the Ni 

reduction at a Ni electrode in boric acid solutions. Facsko and Poralcu 

34- 2+ used vibrating electrodes in studies of the kinetics of the Fe /Fe 

and Ce(IV)/Cê  couples (78) and of the Tî /Tl̂  couple (79). Pass-

waters studied the kinetics of the Ce(IV)/Cê  and Fe(CN)g /Fe(CN)g 

couples at vibrating Pt and carbon paste electrodes (30). Both Facsko 

and Passwaters applied the vibrating electrode to kinetic studies of 

electrochemical reactions having heterogeneous rate constants from 10 ̂  

-5 -1 
to 10 cm sec 

F. Vibrators 

Electrodes have been vibrated by means of ultrasonic techniques 

(41, 58), vibrating stirrers (19, 80), relays (22, 81, 82), buzzers 

(24), doorbells (22, 25), solenoids (30), cranks (16, 43), massage 

vibrators (27, 45), speakers (7, 36), an external vibrating disc (17), 

and a Scotch yoke (34). Electromagnetic vibrators of custom design have 

also been popular (8, 9, 10, 12, 31, 47, 60, 62, 83). One investigator 

(18) used a resonant wire, supported at both ends in a strong magnetic 

field, which was vibrated by passing an alternating current through the 

wire at its resonant frequency. Those vibrators of interest to the 

present work are discussed below. 
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Facsko and Golumbloschl (62) described a polarized electromagnetic 

vibrator, which was very similar to a permanent magnet (PM) loudspeaker. 

The electromagnet was a movable coil, which was centered in the gap of an an

nular, permanent magnet by means of 6 flexible membranes. In common with 

actual speakers, this design had the advantage of being polarized, 

meaning that the frequency of vibration was equal to that of the applied 

current. The polarized vibrator also operated at greater efficiency 

than nonpolarized units, as exemplified by the designs of Lindsey (83), 

and of Popov and Rybyanets (31). 

Loudspeakers have been used as vibrators by Roberts and Meek (7), 

and by Podesta, et al. (36). Roberts and Meek employed an electro-

dynamic speaker, similar in design to those used in the USA prior to 

World War II, which was modified by removing the cone and supporting 

framework. A guide and support for the electrode were then affixed to 

the center of the spider used for centering the voice coil. 

Podesta, et al. used a modern, 7-ln. PM loudspeaker and affixed a 

large supporting cone to the original, acoustic cone. The electrode 

was located at the apex of the supporting cone. The entire assembly 

was Inverted, and the speaker doubled as a cell cover. 

G. Patents 

Several workers have applied for patents relating to vibrating 

electrodes. Lindsey (83) applied for a British patent on his non

polarized electromagnetic vibrator. In the USSR, Khnykln and Ogol 

(72) were Issued a patent relating to uses of vibrating electrodes in 
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electrogravimetric determinations. A second Soviet patent (56) and a 

South African patent (84) were Issued to Petrov, et al. on applications 

of vibrating electrodes in the electrorefining of copper. 
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III. ENGINEERING 

A. Microelectrodes 

The research described in this dissertation was performed with 

microelectrodes made from 28, 30, or 32-gauge (Brown and Sharpe) Au 

or Pt wire and S-pL disposable micropipets. The micropipets were 

Drummond Microcapŝ , obtained in lots of 100 from Chemistry Stores, 

Iowa State University. Tests with 1, 2, 5, 10, and 20-nL disposable 

micropipets proved that the 5-|iL size was best suited to the construction 

of vibrating microelectrodes using 28 through 32-gauge wire, due to its 

small size combined with relatively high ridigity. The 2-IJL size pos

sessed suitable dimensions but insufficient rigidity, and the 1-|JL 

micropipets, although ideal for wire sizes below 32-gauge, had an in

side diameter smaller than the diameter of 32-gauge wire. Micropipets 

larger than 5 were too large for use in microelectrodes. 

The major difficulty encountered in the construction of solid 

voltammetric electrodes is the production of a sturdy insulator-to-

metal seal which is free from capillary leaks. Pt has a thermal coef

ficient of expansion which closely approximates that of soft glass, 

and the formation of a platinum-to-glass seal meeting the above re

quirements is, thus, a fairly simple matter. Au possesses a lower 

melting point than Pt, and the thermal coefficient of expansion of Au 

differs considerably from that of glass. The manufacture of a gold-

to-glass seal of high quality is, consequently, extremely difficult and 

is impossible on the small scale required for this application. 

The Pt wire microelectrodes for the present work were manufactured 
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according to a procedure adapted from Parr and Hendley (85). A 39-mm 

length of Pt wire was cut and one end was polished with 6-pm diamond 

paste. This wire was rotated by hand as the polished end was heated 

in the flame of a type 3A orthodontic blowpipe, manufactured by the 

Veriflo Corp., Richmond, CA. One end of a 5-ML micropipet was simul

taneously heated in the flame until the e.ud fused to form a sphere 

approximately 1 mm in diameter. The molten glass sphere and the heated, 

rotating Pt wire were then brought into contact at a point 5 mm from 

the end of the wire, and a "thread" of molten glass was wound around the 

Pt wire for approximately 2 revolutions of the wire. When correctly 

performed, this procedure resulted in a Pt wire with a glass bead ap

proximately 1.5 mm in diameter, which surrounded the wire evenly and 

left a 5 mm length of wire exposed from the edge of the sphere to the 

tip of the electrode. The wire was then removed from the flame and al

lowed to cool. At this point, the longer end of the wire was inserted 

into a second 5-|iL micropipet until the glass sphere touched the end of 

the micropipet. The sphere and end of the micropipet were carefully 

reheated in the flame until a smooth joint was formed. The flame was 

then lowered in temperature by shutting off the flow of air to the blow

pipe, and the glass-to-metal seal was annealed for 10 min in this fuel-

rich flame. After annealing, the electrode was slowly removed from the 

flame and allowed to cool. When correctly manufactured according to the 

above procedure, the glass-to-metal seal was clear and uniform, with no 

cracks visible in the glass. 

The Au electrodes were manufactured by sealing the Au wire into 

5-pL micropipets with epoxy resin. The wire was cut and polished ac
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cording to the procedure given above for Pt wire. The resin used, 

(RJ 
Epon 828 , and the curing agent, diethylenetriamine (DTA), were both 

products of the Shell Chemical Co., Houston, TX, and were obtained as 

free samples from the Miller-Stephenson Chemical Co., Danbury, CT. 

Batches of epoxy were mixed according to the stoichiometric ratio of 

11 parts DTA to 100 parts resin (w/w) as suggested by the manufacturer. 

This epoxy proved superior to the 5-Minute Epoxy manufactured by the 

Devcon Corp., Danvers, MA, which softened in HgSÔ  solution and did 

not maintain a leak-free seal with Au electrodes. The gap between the 

Au wire and the micropipet was first filled with epoxy, which was al

lowed to cure for 24 hours. The actual gold-to-insulator seal was then 

produced by foming an epoxy sphere at the end of the pipet, allowing 

5 mm of Au wire to remain exposed. The seal was permitted to cure for 

24 hours prior to testing the electrode. Correctly manufactured gold-

to-epoxy seals were free from bubbles entrapped in the epoxy. 

The completed microelectrodes (see Figure III-l) were 39 mm in 

overall length with 5 mm of Pt or Au wire exposed from the tip of the 

electrode to the insulator-to-metal seal. At the top of the electrode, 

a 1 mm length of wire was exposed to permit connection to the upper 

pivot of the mounting assembly. The insulator-to-metal seal was el

lipsoidal in shape and approximately 1 mm in diameter. 

The Pt and Au electrodes were tested by obtaining residual volt-

ammograms in 1.0 M Ĥ SÔ , using voltage limits of + 1.4 V and - 0.25 V 

vs. the saturated calomel electrode (SCE) for Pt electrodes and + 1.7 V 

and 4- 0.2 V vs. SCE for Au electrodes. If necessary, the electrodes 

were preconditioned for up to 2 hours by cycling the electrode between 
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Figure III-l. Mounting assembly for vibrating electrodes 

See Table III-2 for designations of lettered parts 
A through M, 

Scale 1:1. 
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the above limits. Electrodes not yielding reproducible voltammograms 

similar in appearance to those shown in Figures 1 (Pt) and 26 (Au) of 

Bélanger and Vijh (86) were rejected. The dimensions of the electrodes 

which were used in this work are given in Table III-l. 

B. Mounting Assembly for Electrodes 

Each mlcroelectrode described in the previous section was mounted 

in an assembly as indicated in Figure III-l. This assembly was designed 

to allow vibration of the electrode at the maximum frequency and ampli

tude permissible under the constraints set by the electrode and speaker. 

The mlcroelectrode and associated pox"tiens of the mounting assembly, 

designated by parts A through K of Figure III-l, formed a removable 

module. Individual mlcroelectrodes were readily Interchanged by un

soldering the linking wire from the driving fork, removing the mounting 

hardware, and replacing the mounting assembly with a second, similar 

assembly holding a different electrode. 

The materials used in the construction of the mounting assembly 

are listed in Table III-2. The connecting wire, chosen for maximum 

flexibility, was formed into a semicircular loop which permitted the 

driving fork to vibrate freely. A drop of epoxy fastened the bottom end 

of the loop to the bracket. The linking wire and driving fork overlapped 

for 3 mm to facilitate soldering. The angular brace was fastened to 

the bracket at its electrode end with 2-56 brass hardware. Both the 

knee (upper) and fulcrum (central) pivots for the vibrating electrode 

were formed using torsion bearings made from 1.5-mm strips of 3-mil 
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Table III-l. Dimensions of vibrating electrodes used in this work 

Dimensions 
Electrode Wire de ^S-T S-T ^F-S 

A 28 ga. Pt 0.291 5.083 22.976 17.892 

B 28 ga. Pt 0.305 5.193 23.807 18.614 

C 28 ga. Pt 0.30 4.237 23.424 19.187 

D 32 ga. Pt 0.191 5.0 23.0 18.0 

E 30 ga. Au 0.250 4.806 23.715 18.909 

F 28 ga. Au 0.30 5.0 23.0 18.0 

= fulcrum; S = seal; T = tip. 
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Table III-2. Construction materials and designations of parts used 
in the mounting assembly 

Letter in 
Figure 
III-l Designation Material or item used 

A 

B 

C 

F 

6 

H 

K 

L 

M 

Angular brace 

Bracket 

Connecting wire 

Driving fork 

Electrode (active 
surface area) 

Fulcrum pivot 

Glass sheath of 
electrode 

Hardware for 
mounting 

Insulator-to-metal 
seal 

Jack for connection 
to potentiostat 

Knee (upper) pivot 

Linking wire 

Mounting plate 

16-gauge Cu sheet 

16-gauge Cu sheet 

4-cm length of Belden 8599 
wire (7 x 40 ga., insulated) 

20-gauge Cu wire, soldered 
at junction of arms 

Pt or Au wire; see 
Section III-A 

See text 

5-ii.L micropipet; see 
Section III-A 

4 4-36 brass screws and 
brass nuts 

See Section III-A 

Banana jack, epoxied 
to bracket 

See text 

18-gauge Cu wire 

1/8-in. A1 sheet 
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phosphor bronze stock, obtained from the Physics Instrument Shop, Iowa 

State University. To install these pivots, the ends of a 5-cm by 1.5-mm 

predrilled strip of phosphor bronze stock were first soldered to 

20-gauge Cu strips which were wrapped around the projections on the arms 

of a dual buret clamp. The spring in the buret clamp maintained a 

suitable tension on the phosphor bronze strip during its installation 

in the mounting assembly. This strip was then carefully soldered to 

the pretinned projections of the bracket, making certain that the hole 

for the electrode was centered between the projections. The knee pivot 

on the driving fork was assembled in similar fashion, except that the 

bronze strip was soldered to the pretinned arms of the fork. The 

electrode passed through the hole in the bronze strip forming the 

fulcrum and was fastened to it with a small portion of epoxy. At the 

top of the electrode, the Pt or Au wire was carefully soldered to the 

bronze strip forming the knee pivot, after which the top of the glass 

micropipet was fastened to the bronze strip with epoxy. The procedure 

described above produced torsion bearings of uniformly higjh quality, and 

reproducible performance was obtained over periods exceeding 6 months 

under constant usage without replacement of parts. 

Torsion bearings were chosen as the pivots for the vibrating 

electrodes because they were free from mechanical "play" encountered 

with normal bearings. This property was desired in the present work 

because the vibrating electrodes were generally operated at small 

amplitudes and high frequencies, at which such "play" would affect the 

reproducibility of vibration. Also, the use of a conducting torsion 

bearing in the knee pivot, together with the flexible connecting wire. 
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obviated the need for moving contacts such as those used with rotating 

disc electrodes. This frequent source of electrical noise was thus 

eliminated. The torsion bearings were also more rugged than mechanical 

pivots and did not require the exacting alignment demanded by small 

mechanical bearings. 

The geometry of the vibrating electrode and its mounting assembly 

was analogous to that described by Oehme and Noack (10), although these 

authors employed mechanical pivots, a crude vibrator, and much larger 

electrodes than those used in this work. The use of torsion bearings 

in Torbal̂  analytical balances in place of the customary knife edges 

exemplified the reproducibility and sensitivity of this technology to the 

present author and suggested its application to vibrating electrodes. 

C. Loudspeaker 

The vibrator employed in this research was an acoustic suspension 

loudspeaker. Realistic part No. 40-1197, obtained from Radio Shack, 

Ames, lA. This speaker was modified for use as a vibrator by gluing a 

metal cone, 23 mm in diameter, to the cardboard dome covering the voice 

coil. This metal cone was formed from a 25-mm circle of 3-mil phosphor 

bronze stock which was cut along a radius. The edges of this cut were 

overlapped until the apex angle of the cone so formed measured 135 

degrees and were then soldered. A linking wire, 32 mm in length, was 

then soldered to the apex of the cone. The modified speaker was mounted 

on a vertical piece of 1/2-in. A1 stock, 7 in. high and 6 in. wide, 

which had a circular hole, 3-5/8 in. in diameter, centered 2-5/16 in. 
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below the top of the support and 3 in. from either side. The speaker 

was affixed to the rear side of this support and was centered In the 

circular hole, with the linking wire protruding normal to the plane of 

the hole. The mounting plate shown in Figure Ill-l was fastened to the 

front side of the support with its long dimension vertical, and the 

linking wire was centered in the 1/4-in. hole in this plate. The 

vertical support was mounted on a base of 1/4-in. Â1 stock measuring 

6 In. by 6-1/2 in. such that the rear face of the speaker magnet was 

flush with the shorter side. 

Loudspeakers possess several advantages relative to other types of 

vibrators which have found application to vibrating electrodes. The 

amplitude of vibration is directly proportional to the value of the 

alternating-current (AC) input voltage. Speakers vibrate over a wider 

range of frequencies than other types of vibrators previously used with 

voltammetrlc electrodes. These 2 properties are fundamental require

ments for high-fidelity sound reproduction, and much research has been 

performed to design loudspeakers which most closely approach these goals. 

Such engineering and design research was exploited to advantage in the 

present application. The amplitude and frequency of vibration of the 

electrode are determined by the voltage and frequency on the input sig

nal to the speaker, and the vibrational parameters thus may be changed 

rapidly and reproduclbly by means of appropriate changes in the charac

teristics of the Input signal. Loudspeakers are also inexpensive and 

readily available, and they require minimal modification for use as 

vibrators. 

The acoustic suspension loudspeaker used in this research featured 
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a 200-g magnet and cloth-roll suspension and had high compliance. The 

diameter of the cone excluding the cloth roll was 3-1/2 in. The ampli

tude of vibration which resulted from a given AC input voltage was thus 

very large, and the mechanical power available to drive the vibrating 

electrode was more than sufficient to achieve the desired vibrational 

parameters with minimal loading of the speaker. 

D. Mechanical Evaluation of the Vibrating Electrode 

The electrode system described in the previous sections could be 

vibrated at frequencies from 5 Hz to 500 Hz at amplitudes up to 3 mm, 

peak-to-peak. The upper limit to the frequency of vibration was set 

by the natural resonance of that portion of the microelectrode below 

the fulcrum pivot. This resonance occurred at approximately 550 Hz 

for the microelectrodes used in this work. At the frequency corresponding 

to natural resonance, a small excitation of the electrode by the speaker 

induced vibrations of large amplitude in the lower half of the micro-

electrode. The glass micropipet no longer behaved as a rigid member 

but bent at the fulcrum and consequently fractured at or near the 

fulcrum. This nonideal behavior was not observed at vibrational fre

quencies below 500 Hz, which were sufficiently removed from the resonant 

frequency to ensure safe operation. The lower limit of 5 Hz was 

determined by the frequency limitations of the instrumentation used to 

drive the speaker. 

The only resonance displayed by the electrode system in the usable 

frequency range of 5 Hz to 500 Hz was a lateral resonance of the driving 



www.manaraa.com

38 

fork and torsion bearings. This resonance occurred at approximately 

300 Hz and resulted In elliptical motion of the vibrating electrode, 

as contrasted to the desired reciprocal motion. The lateral response 

had no deleterious effects on the electrode, and this frequency could 

be avoided In studies requiring pure reciprocal motion. The speaker 

displayed a highly damped natural resonance at approximately 75 Hz 

which did not affect the mechanics of vibration. 

The amplitude of vibration was measured with a travelling micro

scope constructed from a model MIOIA microscope with M204 scale eye

piece micrometer, products of the Gaertner Scientific Corp., Chicago, 

IL, and a micrometer slide, part No. 469M, manufactured by the L. S. 

Starrett Co., Athol, MA. The micrometer slide was capable of measure

ments with an accuracy of + 0.001 mm and was used to calibrate the 

eyepiece micrometer by moving the image of a stationary object across 

the field of vision, which was approximately 3.3 mm in diameter. 

Those electrodes whose measurements are given in Table III-l to an 

accuracy of 0.001 mm were measured using the travelling microscope 

in its usual fashion. The vibrational amplitude was measured using 

the calibrated eyepiece micrometer to observe the distance traversed 

by the image of the thin, bright reflection from the polished surface 

of the Pt or Au wire forming the active surface of the working elec

trode. Light was provided by a high-intensity lamp positioned so 

as to maximize the intensity of this thin reflection. The maximum 

vibrational amplitude in the research was limited to 3.3 mm, which 

was the diameter of the field of vision of the eyepiece micrometer. 
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The observed vibrational amplitude, â ^̂ , was measured at a point 

0.069 mm above the tip of the Au or Pt wire. The corresponding value 

for the peak-to-peak vibrational amplitude of the tip of the electrode, 

a , was calculated from each value of a , by means of Equation III-l. 
pp Obs  ̂

Unless otherwise stated, all values for a and related quantities 
PP 

cited in this dissertation were calculated from experimental values 

for â ĝ using Equation III-l and, consequently, refer to the condi

tions prevailing at the tip of the electrode. Equation III-l was de

rived from the basic geometric and trigonometric relationships governing 

the motion of a point through an arc of a circle, which is the motion 

described by the tip of the electrode. Since this arc is of small 

amplitude relative to the length of the electrode, the motion of the 

tip of electrode closely approximates the ideal of linear simple har

monic motion. 

Figure III-2 illustrates typical calibration curves for the peak-

to-peak vibrational amplitude (â )̂ of the tip of the electrode as a 

function of the input voltage to the speaker (Ê )̂. The vibrational 

amplitude is directly proportional to the input voltage to within 2% 

at 240 Hz and 1% at 80 Hz. Greater deviations were observed at higher 

vibrational amplitudes, not shown in these calibration curves. The 

vibrational ançlitudes covered by these curves, however, exceed those 

used in the electrochemical work, thus ensuring the desired linearity 

in all electrochemical investigations. The input voltage to the speaker 
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Figure III-2. Calibration curves for Electrode A 

• 80 Hz; • 120 Hz; # 240 Hz. 
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was measured in volts RMS using a Simpson model 461 digital multimeter, 

manufactured by the Simpson Electric Co., Elgin, XL. 

Figure III-3 illustrates the frequency response of a vibrating 

electrode from 30 Hz to 510 Hz. The peak-to--peak amplitude of vibra

tion is plotted as a function of the frequency for a constant input 

voltage of 1.000 V RMS. The amplitude obtained at a given input voltage 

decreases with increasing frequency up to approximately 400 Hz. Above 

this frequency, a slow increase is noted. This increase represents the 

low-frequency shoulder of the peak resulting from natural resonance of 

the lower portion of the electrode and indicates that the electrode is 

no longer behaving as a rigid member. 

The amplitude measurements for the calibration curves shown in 

Figures III-2 and III-3 were obtained with the lower portion of the 

electrode immersed in a square spectrophotometric cuvet filled with de-

ionized water. Surprisingly, the vibration amplitudes observed with the 

electrode immersed in water were approximately 3% greater than those 

observed under identical conditions but with the electrode vibrating in 

air. Measurements of a stationary object of known dimensions estab

lished that this difference was not due to refractive effects of the water. 

E. Calculation of Rê  from the Experimental Data 

Knowledge of the vibrational Reynolds number is fundamental to the 

characterization of the flow pattern around vibrating electrodes. The 

vibrational Reynolds number, Rê , may be readily calculated from Equation 

II-2 if the average velocity, v̂ ĝ, and diameter, d̂ , of the electrode 
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Figure III-3. Frequency response of Electrode C 

E. = 1.000 V RMS. 
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are known. The kinematic viscosity, v, of the solution must also be 

known. 

The kinematic viscosity of a liquid is defined as the ratio of the 

viscosity of the liquid to its density. For 0.5 M at a tempera

ture of 25 C, the supporting electrolyte used in the studies of 

- 1  - 1  
as a function of Re , these values are 0.01092 g cm sec for the 

V 

viscosity and 1.0273 g cm for the density (calculated from data in 87). 

0 — 1 
The kinematic viscosity of 0.5 M Is thus 0.01063 cm sec 

The diameters of the electrodes used in this work appear in 

Table III-l. 

The average velocity of the vibrating electrode may be calculated 

from the basic equation defining simple harmonic motion. Equation III-2, 

in which x(t) represents the location of the vibrating body as a func

tion of time. 

,x(t) = a cos mt (III-2) 

The velocity of this body as a function of time, v(t), is obtained from 

differentiation of Equation III-2 with respect to time. Since the ef

fect of motion of the electrode is the same in both directions of vibra

tion, the absolute value of the velocity, |v(t) |, is the parameter of 

interest: 

jv(t) 1 = |dx/dt| = \- am sin tut j (III-3) 

Equation III-3 is familiar to the reader as the relationship describing 

the voltage observed at the output of a full-wave rectifier, prior to 

filtering, in a direct-current (DC) power supply. 
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From the periodic nature of the graph of Equation III-3, It Is 

evident that v̂ ^̂  Is most expeditiously obtained by averaging |v(t) | 

over the region from (ut = 0 to (Ut = rr. This average value Is given by 

Equation III-4. 

r âvg ~ I am sin tut d(u>t) = 2au)/n (III-4) 

The angular frequency of vibration (o, is related to the frequency, f, 

by Equation III-5. 

u) = 2rrf (III-5) 

The relationship between v̂ ^̂  and the vibrational parameters is obtained 

by combining Equations III-4 and III-5. 

V = 4af = 2a f (III-6) 
avg pp ' 

Equations III-6 and 11-2 may be combined to give the basic relationship 

between Rê  and the experimentally determined parameters a and f. 

Equation III-7. The value of a in Equations III-6 and III-7 is equal 

to half the value of a as defined in this dissertation. 
PP 

Re = 4afd /v = 2a fd /v (III-7) 
V e pp e 

The average vibrational velocity for electrode C as a function of 

the frequency of vibration is shown in Figure III-4. Each point on the 

graph was calculated from the corresponding datum shown in Figure III-3 

using Equation I1I-6. When presented in this manner, the data show 

the Increases in relative mechanical efficiency of the vibrating system 

at 75 Hz, due to the natural resonance of the speaker, and at the upper 
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Figure III-4. Average vibrational velocity for Electrode C as a function of frequency 

E. = 1.000 V RMS. 
in 
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frequency limit, at which the natural resonance of the electrode is 

approached. The slight decrease in efficiency at 300 Hz results from 

the lateral resonance of the mounting assembly. 

F. Cell 

The cell employed for all experiments described in this disserta

tion, with the exception of those employing flow-injection analysis, 

was constructed from a square bottle, model 13537, manufactured by the 

Hach Chemical Co., Ames, lA. This bottle was originally designed for 

use in an apparatus for water analysis in which sample preparation and 

spectrophotometrlc analysis were both conducted in the same vessel. 

For this reason, the bottle is more rugged than spectrophotometrlc 

cuvets but optically of higher quality than similar bottles designed 

solely for storage of reagents. As supplied, the bottle had 2 clear 

sides and 2 frosted sides and had a capacity of 25 mL, indicated by a 

frosted mark on one of the clear sides. For use as the electrochemical 

cell in the present work, the portion of the bottle above the frosted 

mark was sawed off, and 2 fritted glass discs (Corning part No. 31001-10, 

medium porosity) were attached to the 2 frosted sides of the square 

bottle, with the centers of the frits 1.5 cm above the bottom of the 

bottle and the tubes (supplied with the frits) projecting horizontally 

outward. Following completion of this step, both tubes were bent ;mtll 

they projected vertically upward at a distance of 2.5 cm from the side 

of the cell, and excess tubing was removed such that the ends of the 

tubes were flush with the top of the sawed-off bottle. These 2 tubes 
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served as the compartments for the counter and reference electrodes. 

The vibrating electrode was immersed in the central, 2.4-cm square com

partment of the completed cell. This compartment had a capacity of ap

proximately 28 mL. 

For experiments requiring removal of 0̂  from the solution, the 

central compartment of the cell was covered with a shield made from a 

3.0 X 3.0 X 0.3-cm piece of Teflon which was provided with 2 2-mm holes 

located in the center and right rear corner of the shield. Deaeration 

of the solution in the central compartment was readily effected by 

bubbling a stream of gas through a Pasteur pipet inserted in the 

corner hole. The vibrating electrode was inserted into the solution 

through the center hole. 

The completed cell permitted observation of the vibrating electrode 

in situ by means of the travelling microscope. Because the optical 

quality of this cell was not as high as that of a spectrometric cuvet, 

the image of the vibrating electrode was slightly blurred. Hence, the 

calibration curves of a vs. E. for the vibrating electrodes were pp in 

obtained using cuvets as previously described. 
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IV. INSTRUMENTATION 

The research described in this dissertation was performed with the 

aid of electronic instrumentation whose design and operation are pre

sented in this chapter. Emphasis is given to those circuits which have 

not previously appeared in the literature. Much of the circuitry 

employs operational amplifiers, whose principles of operation and electro

chemical applications are discussed by Deboo and Burrous (88), and by 

Bard and Faulkner (89), respectively. 

A. General Guidelines 

Unless otherwise noted, the following guidelines apply to all 

circuits presented in this section. Resistors are 1% metal film units. 

Resistances in the figures are given in ohms, with K and M signifying 

thousand and million, respectively. Capacitors shown in the diagrams 

without indication of polarity are Mylar units with capacitances noted 

in microfarads (liF). Electrolytic capacitors have their capacitances 

(in liiF), polarities, and rated voltages noted in the schematic diagrams. 

Except as noted, the operational amplifiers have offset potentiometers, 

connected and adjusted in accordance with the manufacturers' recommenda

tions (90, 91). These offset potentiometers are not shown in the 

schematic diagrams. The connections from the operational amplifiers to 

the power supply also follow standard practice and are not depicted in 

the diagrams. Circled letters denote connections to other circuits, as 

noted for each figure. All offset potentiometers and connections to the 

power supply are shown for integrated circuits other than operational 
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amplifiers. All circuits were constructed on perforated fiberboard. 

Voltage, current, and resistance measurements were performed with a 

Simpson model 461 digital multimeter, manufactured by the Simpson Electric 

Co., Elgin, IL. Waveform observations and measurements were performed 

on a model 122A oscilloscope, manufactured by the Hewlett-Packard Co., 

Palo Alto, OA. Frequency measurements were performed on this oscillo

scope by applying the signal of unknown frequency to the vertical ampli

fier and a 10-V RMS, 60.00-Hz standard signal, obtained from the 115-V 

power line using a Bell transformer, to the horizontal amplifier. The 

patterns so obtained were of the type first described by Bowditch (92) 

in 1815 and today are known as Lissajous figures. Their application 

to frequency measurements is reviewed in the literature (pp. 168-71 of 

93). The unknown frequency was adjusted such that a stationary Lissajous 

pattern of the desired order was obtained. This technique was ap

plicable to unknown frequencies from 10 Hz to 510 Hz, which were em

ployed in this research. 

B. Potentiostat 

A schematic diagram of the potentiostat used in this research is 

presented in Figure lV-1. The circuit is of standard design and is 

similar to that shown in Bard and Faulkner (Figure 13.4.5 of 89). In 

the present circuit, however, the current passing through the working 

electrode (WE) is monitored indirectly by employing an instrumentation 

amplifier, composed of operational amplifiers CA3 and 0A4, to measure 

the voltage drop across a standard resistance placed in the lead to the 
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Figure tV-l, Schematic diagram of potentiostat 

OAl, 0A3, 0A4, OAS — National Semiconductor LM741 opera
tional amplifier; 0A2 — Analog Devices AD540 FET input 
operational amplifier; R1 — 10-turn trimmer potentiometer; 
Ŝ  — single-pole, 5 position rotary switch. 
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the counter electrode (CE). This approach has found previous application 

(94). The instrumentation amplifier was taken from Malmstadt, et al. 

(p. 30 of 93). In contrast to normal practice, this modification to 

the standard circuit allows the working electrode to be grounded directly 

and consequently eliminates the introduction of unwanted noise through 

stray coupling to the working electrode. The elimination of such noise 

was of prime concern in this research. The modified potentlostat suffers 

from the disadvantage that the range of potentials which may be as

sumed by the counter electrode is limited by the common-mode restric

tions of the instrumentation amplifier and not by the less stringent 

output restrictions of the control amplifier, OAl. In the aqueous solu

tions studied in this research, however, these limits were not approached. 

. An operational amplifier having FET input is used at 0A2, the 

voltage follower for the reference electrode (Ref). 0A5 is connected 

as a voltage follower and Isolates the voltage output of the potentlo

stat, point C, from the feedback loop. The ratio of the 2 resistors 

connected to the summing junction of OAl provides an attenuation of the 

input signal from the triangular waveform generator by a factor of 4. 

This attenuation reduces the effects of drift and noise from the wave

form generator by a like factor. External voltages, such as sinusoidal 

signals for AC polarography or switched DC potentials for voltage-step 

applications, may be applied to the potentlostat through resistors con

nected to the summing junction of OAl. These external voltages are 

attenuated by a factor of (R /ID), where R represents the resistance 
6Xt 0Xt 

of the added resistor in kilohms. 

The common-mode rejection ratio (CMRR) of the instrumentation 
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amplifier is optimized by removing OAl and connecting the noninverting 

input of 0A3 alternately to potentials of + 5.0 V and - 5.0 V. The 

setting of the CMRRAdj. potentiometer, Rl, is then adjusted until the 

output potential of 0A3 remains 0.000 V for both input values. 

The potentiostat is wired such that the potential appearing at the 

voltage output is equal to - and the potential appearing at the 

current output, point B, is positive for cathodic currents. This choice 

permits voltammograms to be obtained on an X-Y recorder with the axes 

presented in the standard electrochemical presentation (negative 

potentials to the right, cathodic currents upward). The X-Y recorder 

need not have its input leads reversed nor be used upside-down to 

achieve this format. Use of the output potential from 0A5 for the 

voltage axis also provides a foolproof indication of saturation in 

the potentiostat. Since the output of 0A2 (and thus 0A5) is equal to 

- Ê , the potential observed at the voltage output during saturation 

of the potentiostat remains fixed at the potential at which such 

saturation occurs. Most commercial potentiostats obtain their voltage 

output directly from the waveform generator and therefore give no 

indication of saturation in the potentiostat. 

In cases where additional frequency compensation for the control 

amplifier is required, an external capacitor may be connected between 

the 2 terminals noted in Figure IV-1. For the experiments described 

in this dissertation, a 680-pF silver mica capacitor was used to as

sure freedom from unwanted oscillations. 
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C. Triangular Waveform Generator 

A schematic diagram of the triangular waveform generator designed 

for this research Is shown In Figure IV-2. The circuit Is based on 3 

operational amplifiers and uses electronic switching In place of mechani

cal switching at the voltage scan limits. The waveform generator 

features Independent control of the positive and negative scan limits, 

the facility for manual reversal of scan direction, and automatic 

termination of the voltage scan at either scan limit. 

For analysis, the waveform generator may be considered as having 

3 stages: an integrator of standard design made from an operational 

amplifier with FET input, OAS, 2 voltage comparators made from general-

purpose operational amplifiers, 0Â1 and 0A2, and a diode switching net

work. Diodes D1-D6 comprise the switching network. All electrical 

components are considered to be Ideal devices, which is a satisfactory 

approximation for their application in this circuit. 

An analysis of the circuit begins most conveniently with the 

integrator, which functions according to Equation IV-1. 

where ê ^̂  ê , and are, respectively, the input voltage, output 

voltage, input resistor, and feedback capacitor indicated in Figure 

IV-2. The value of ê  Is represented by a positive linear ramp 

(dê /dt > 0) for a negative value of ê ^̂  and vice versa. From the 

orientation of diodes D2 and D4 shown in Figure IV-2, it can be seen 

that the negative value of ê  ̂needed for a positive ramp originates 

(IV-1) 
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Figure IV-2. Schematic diagram of triangular waveform generator 

OAl, 0A2 — National Semiconductor LM747C dual operational amplifier; 0A3 — Analog 
Devices AD540 FET input operational amplifier; D1 to D6 ~ 1N914 diodes; VR — voltage 
regulator; 4 1N914 diodes and 1N747 Zener diode; PI, P3, P5 — 10-turn potentiometers 
with calibrated dials; P2, P4, P6 — 10-turn trimmer potentiometers; SI, S2 — 
normally-open push button switches; S3 — double pole on-off-on switch; S4 — single 
pole on-off-on switch; 85, S6 — SPDT switches. 
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from comparator amplifier OAl and that the positive value of ê  ̂re

quired for a negative ramp originates from comparator amplifier 0A2. 

The limits for the positive and negative voltage scans are determined 

by potentiometers PI and P3, respectively. The scan rate is determined 

by potentiometer P5. Potentiometers P2. P4, and P6 are for calibra

tion adjustments. 

The functioning of the switching diodes D1-D4 is most readily under

stood by following the operation of the circuit through one cycle of the 

output waveform. Assume that the integrator starts on a positive scan. 

This means that the output of OAl is at negative saturation, -

and diodes D1 and D2 are conducting. Since D1 is conducting, 0Â2 "sees" 

- from OAl at the noninverting input. This voltage is less than 

the negative scan limit obtained from P3, and 0A2 is forced to negative 

saturation. Hence, diodes D3 and D4 are nonconducting so that 0A2 

influences neither the integrator input voltage nor the voltage present 

at the noninverting input of OAl. Furthermore, the voltage at the 

noninverting input of OAl is equal to the integrator output voltage, 

ê . When the integrator output voltage reaches the positive scan 

limit, set at PI, the output of OAl switches to positive saturation, 

+ and D1 and D2 become nonconducting. The signal now at the non-

inverting input of 0A2 is ê . Since is greater than the negative 

scan limit at this time, 0A2 switches to positive saturation. Diodes 

D3 and D4 are now conducting, so that the Integrator output changes to 

a negative scan. OAl has a voltage of + at the noninverting input 

and is thereby forced to positive saturation. As a result, D1 and D2 

are nonconducting so the output of OAl Is Isolated both from 0A2 and 
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from the integrator input. This state continues until the integrator 

output reaches the negative scan limit. At this Instant 0À2 switches 

to negative saturation, D3 and D4 become nonconducting, and 0Â1 again 

"sees" the Integrator output voltage, ê , at the nonlnvertlng input. 

OAl then switches to negative saturation, D1 and D2 conduct, and the 

Integrator output changes to a positive scan. This completes one 

cycle of the triangular waveform. This process will repeat Itself in

definitely unless interrupted by the manual activation of switches 

SI, S2, or S3. 

82 and SI are the Scan Positive and Scan Negative switches. These 

are normally-open pushbutton units which when pressed introduce a pulse 

to the nonlnvertlng input of the comparator amplifier controlling the 

scan. This pulse is of appropriate polarity and sufficient amplitude 

to cause the comparator output to switch state. The opposite comparator 

then takes over as described above and disables the first comparator; 

this results in a reversal of the scan direction. If the Scan Positive 

switch (S2) is pressed during a positive scan, 0A2 is already in a 

disabled state, and the switch has no effect on the scan direction. 

The same holds for the Scan Negative switch (SI) during a negative scan. 

S3 is the Stop at Limit switch. Operation of S3 is most easily 

explained by consideration of a latching comparator as shown in 

Figure IV-3 for comparator OAl. If the Latch switch is open, the 

circuit functions normally as described above. If the Latch switch 

is closed when ê  is less than the comparator remains at negative 

saturation, and D5 is nonconducting. As soon as e exceeds E , the 
o lim 

comparator switches to positive saturation, and D5 conducts, placing a 
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Figure IV-3. Latching comparator 
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voltage of + at the noninverting input. The comparator is now 

latched and will remain at positive saturation regardless of ê  until 

the Latch switch is opened. If the Latch switch is closed when ê  is 

greater than the comparator latches immediately. In the sweep 

generator, OAl is at positive saturation during the negative scan. If 

the Stop at Limit switch is put in the Negative position, at this 

time, OAl becomes latched. Comparator 0Â2 controls the output scan 

until the negative scan limit is reached and then switches to negative 

saturation. Diodes Dl, D2, D3 and D4 are now all nonconducting since 

OAl is latched at positive saturation and cannot switch state at the 

negative scan limit, as normally occurs. The value of ê  ̂to the integra

tor is tlws zero, and the scan "holds" (dê /dt = 0) at the negative scan 

limit. If the Stop at Limit switch is put in the Negative position 

during the positive scan, OAl is at negative saturation and the 

comparator does not latch. When the positive scan limit is reached, 

OAl switches to positive saturation and the comparator latches. The 

generator then scans to the negative scan limit and "holds" as described 

above. The operation of the Stop at Limit switch in the Positive posi

tion is entirely analogous to that described above except that all 

polarities are reversed and the latch is on 0A2. It should be noted 

that the Stop at Limit switch can be put in either of the limit posi

tions during either scan direction without affecting the scan until the 

corresponding limit is reached. This is a major advantage of this 

circuit. 

When the Stop at Limit switch is returned to the Auto position after 

the generator has stopped at the corresponding limit, the latched 
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comparator switches state and takes control of the scan; normal opera

tion resumes. If the Stop at Limit switch is momentarily switched from 

either limit position to Auto and then returned to its original posi

tion, one complete scan from that limit to the opposite limit and back 

will be produced. A half scan can be produced by switching from one 

limit to the opposite limit. 

Manual interruption of the scanning operation can be made at any 

time by switching S4 from the Scan position to the Hold position. When 

S4 is switched to the Zero position, ê  goes to zero volts. Returning 

S4 to the Scan position from either the Hold or Zero positions allows 

the resumption of the scanning operation. 

The operational amplifiers used for the comparators must be capable 

of withstanding a differential input voltage of + 15 V, The feedback 

capacitor, Ĉ , is a Mylar unit or comparable type having low leakage. 

Capacitors of smaller value may be wired in parallel if necessary to 

obtain the given value of Ĉ . Electrolytic capacitors are not suitable 

for this application. The diodes used in the switching network should 

have high reverse resistance to assure correct operation of the switching 

and latching functions. The 4 bridge diodes in the voltage regulator 

(VR) network should be matched for forward voltage drop. High switching 

speed in the comparator amplifiers and for the switching network is not 

necessary for the scan rates less than 40 V min"̂  which were required 

for this research. The 2 20 KA and 2 5.1 KA resistors shown are 5% 

composition units, and the 2 Kiv and 100 Kn. resistors in the integrator 

circuit are 1% metal film units. 

All electrochemical data cited in this dissertation, with the ex-
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caption of the data for the differential pulse anodic stripping volt-

ammetry (DPASV) of Hg, were obtained with the potentiostat and triangular 

waveform generator described in this chapter. A single power supply, 

model AD902 from Analog Devices, Inc., Norwood, MA, was used to power 

both circuits. 

Original circuits for triangular waveform generators have been 

published in numerous articles during the last 15 years. The use of 

operational amplifiers in triangular waveform generators was pioneered 

by Buck and Eldridge (95). Sherwood (96) has reviewed the literature 

of triangular waveform generators through 1975. Most of the circuits 

are more complex than that presented in this work and employ digital 

logic in the switching functions. The circuit presented in this sec

tion has not appeared in the literature and is likely the simplest 

possible circuit which fulfills the design criteria set forth at the 

beginning of this section. 

D. Lock-in Amplifier 

1. Introduction 

Portions of this research, to be presented in Chapters V and VI of 

this dissertation, deal with the application of hydrodynamic modulation 

(97) to voltamsietry at rotating disc and vibrating electrodes. In 

hydrodynamic modulation, the mass transport rate to the surface of the 

working electrode is varied sinusoidally about an average value by 

appropriate alteration of the rotation speed or vibrational parameters. 

For electrochemical reactions whose rate is limited by the rate of 
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mass transport to the surface of the electrode, hydrodynamic modulation 

results in a corresponding AC component to the current at the working 

electrode. The amplitude of this AC component is proportional to the 

concentration of the electroactive species. Phase selective detection 

of this AC component is required to ascertain whether the electrochemical 

reaction taking place is an oxidation or a reduction. In addition, the 

circuitry which processes the AC component must reject hum and noise 

from the potentiostat, which is frequently larger in amplitude than the 

desired signal. 

A block diagram of the lock-in amplifier (LIA) constructed for this 

purpose is presented in Figure IV-4. The LIA is designed to isolate 

the low-amplitude 10-Hz component present in the output of the potentio

stat and to produce a DC output signal which is proportional to the 

amplitude of this AC component and is dependent on the phase of this 

AC component relative to the phase of a 10-Hz reference signal. The 

frequency of the hydrodynamic modulation, 10 Hz, was fixed by physical 

limitations of the rotator, model HSR, manufactured by Fine Instruments, 

Grove City, FA. This rotator was used with the rotating disc electrodes 

(RDEs) employed in this research. The LIA is divided into 4 sections, 

as indicated in Figure IV-4: the 10-Hz amplifier, the phase-selective 

detector, the phase shifter, and the reference generator. In Figure 

IV-4, a capacitor placed between 2 stages indicates that AC coupling is 

used at the corresponding point in the actual circuit. Offset 

potentiometers are not used in those stages which are AC coupled to 

succeeding stages (OAl, 0A2, OAIO), in the comparators (0A4, OAll), or 

in the first 2 stages following the 4-quadrant multiplier (OAS, 0A6). 
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Figure IV-4. Block diagram of lock-in amplifier 

Nomenclature of stages: OAl — Voltage follower; 0A2, 0A3 — 10-Hz tuned amplifier; 
0A4 — Warning comparator; ICI — 4-quadrant multiplier; OAS — Level shifter; 0A6, 
0A7 — 4-pole Butterworth LP filter; 0A8 — Voltage follower for phase shifter; 0A9 — 
Phase shifter; PLL — Phase-locked loop; OAIO — Voltage follower with variable 
gain; OAll — Schmitt trigger with adjustable threshold. 

Designations for the 4 subsections of the LIA and references to the corresponding 
figures for detailed schematic diagrams are given in the figure. 
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All external controls and switches are noted in Figure IV-4. The entire 

LIA is powered by an Analog Devices AD902 power supply (+ 15 V at 100 mA); 

current drain is approximately 60 mA from each side of the supply. The 

LIA, with its power supply, and the triangular waveform and potentiostat, 

with their power supply, were both mounted in a 17 x 6 x 3-in. A1 

chassis, which was covered by an A1 bottom plate. All circuitry was 

thus housed in a shielded enclosure. The 3 connections from the potentio

stat to the cell and the 2 inputs to the LIA were made with 4 BNC-type 

coaxial connectors. The chassis was connected to the circuitry and to 

a water-pipe ground at the outside contact of the input jack for the 

reference electrode. The 2 outputs from the potentiostat and the LIA 

output were brought to a multi-pin connector, which permitted connection 

to the X-Y recorder with a single, 3-wire shielded cable. 

2. 10-Hz amplifier 

The schematic diagram of the 10-Hz amplifier is shown in Figure IV-5. 

The 10-Hz component of the input signal to the LIA is selectively ampli

fied in this section. The circuit consists of a voltage follower, OAl, 

2 stages of 10-Hz tuned amplification, 0A2 and 0A3, and a warning 

comparator, 0A4. Switch SI connects the input of the LIA to either the 

current output of the potentiostat or to the external input. The AC 

Gain potentiometer, PI, sets the overall gain of the 10-Hz amplifier; 

it thus determines the sensitivity of the LIA. The linear relationship 

desired between the setting of PI and the gain of the 10-Hz amplifier 

is ensured by the high input impedance presented by OAl. 

0A2 and 0A3 are connected as multiple-feedback resonators. The 



www.manaraa.com

Figure IV-5. Schematic diagram of 10-Hz tuned amplifier 

0A.1 — LM741 operational amplifier; 0A.2, 0A3 — LM747 dual operational amplifier; 
0A4 — 1 section of LM747 dual operational amplifier, OAIO is the other section; 
LED — Light emitting diode (red); PI — 10-turn precision potentiometer with cali
brated dial; P2 — 10-turn trimmer potentiometer; SI — SPDT switch. 

Variable resistors for RC networks: Rl, R3 — lOK 1% resistor and lOK trimmer 
potentiometer in series; R2, R4 — lOOK 1% resistor and lOOK trimmer potentiometer 
in series. 
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design equations and principles of operation of this circuit are given 

by Williams (98). In the present application, the component values were 

chosen for a voltage gain (per stage) of 50, a resonant frequency, f̂ , 

of 10 Hz, and a Q factor (resonant frequency divided by bandwidth at 

3-dB points) of 5.0. For the 2-stage tuned amplifier used in the LIA, 

the overall voltage gain is thus 2500 (68 dB) and the overall Q is 9.8 

(3-dB bandwidth 1.0 Hz). The RC networks for each stage, outlined by 

broken lines in Figure IV-5, are constructed as removable subassemblies, 

to facilitate changes in f̂ . The alignment procedure for the 10-Hz 

tuned amplifier is based on the property that the multiple-feedback 

resonator displays a phase shift of 180 deg at the resonant frequency. 

To align the RC network, R2 and R4 are first set to the theoretical 

value for f̂  = 10 Hz, 159 KA, prior to installation of the RC subas

semblies into the circuit. The subassemblies are then connected to the 

circuit and the LIA is turned on. A 50-mV RMS, 10.00-Hz signal is con

nected to the external input of the LIA and to-the horizontal.input 

of the oscilloscope. The vertical input of the oscilloscope is con

nected to the output of 0A2, and the AC Gain control is set to 10.0 

turns. R1 is then adjusted to give a 1:1 Lissajous figure with a phase 

angle of 180 deg (line of slope - 1). The vertical input of the 

oscilloscope is then moved to the output of 0A3, and the setting of the 

AC Gain control is changed to 0.2 turns. R3 is then adjusted to give a 

1:1 Lissajous figure at a phase angle of 0 deg (line of slope + 1). 

The 10-Hz amplifier is now aligned. 

The light emitting diode (LED), driven by comparator 0A4, provides 

a visual indication of overload of the LIA. The LED illuminates when
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ever the output of 0A3 exceeds 10 V̂ p. To adjust the LED Threshold 

potentiometer, a 10.00-Hz signal Is connected to the external output, 

and the AC Gain control Is advanced until the output of 0Â3 Is 10.0 V , 
PP 

as measured with the oscilloscope. The LED Threshold̂  potentiometer is 

then adjusted until the LED commences flashing at 10 Hz. 

3. Phase-selective detector 

The schematic diagram of the phase-selective detector is given in 

Figure IV-6. The circuits for the 4-quadrant multiplier and level 

shifter were taken from the Motorola data manual (99) and were modified 

for increased linearity as described in the manual. The offset poten

tiometers, P4, P5, and P6, were adjusted in accordance with the proce

dures given in the Motorola manual. The monitor jack, which is con

nected to the output of OAS, is used during alignment of the LIA and 

permits observation of the unfiltered output of the LIA on an oscillo

scope. The waveforms present at the output of 0A5 for In-phase and out-

of-phase operation of the phase-selective detector are similar to those 

shown in Malmstadt, et al. (pp. 75, 124 of 100) and are used to verify 

correct functioning and alignment of the LIA. 

The output signal from OAS is applied to the input of a 4-pole 

Butterworth loŵ pass (LP) filter (101) constructed from OAS, 0A7, and 

associated circuitry. The values for the resistors are obtained from 

Hilburn and Johnson (p. 37 of 101), based on a chosen cutoff frequency 

of 2.0 Hz, capacitor value of 1.0 fJF, DC gain of 4.0, and K-va lue 

(constant in the transfer function) of 50. The cutoff frequency of 

2.0 Hz is chosen to maximize the response time of the LIA to the 
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Figure IV-6. Schematic diagram of phase-selective detector 

ICI — Motorola MC1595 4-quadrant multiplier; 0A5, 0A6, 
0A7 — LM741 operational amplifier; P3, P4, P5, P6 — 
10-turn trimmer potentiometers. 
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greatest extent possible, consistent with adequate filtering of the 10-

and 20-Hz ripple present at the output of 0À5. With the circuit as 

shown In Figure IV-6, a maximum ripple voltage of 3 mV̂  ̂Is observed 

for 10.00 V DC output from the LP filter. The response time observed 

for 99% response to a A-mV̂  ̂signal at the Input to the LIA was 1.2 sec. 

This response was determined principally by the step response of the 

10-Hz tuned amplifier. 

The Ac Gain Set potentiometer, P3, is used to set the overall 

maximum gain of the phase selective detector. It is set so that a 

10.00-Vpp signal at the output of OAS results in a 10.00 V DC signal at 

the output of 0A7. 

4. Phase shifter 

The schematic diagram of the phase shifter is Illustrated in Figure 

IV-7. This circuit products a sinusoidal output signal, which is 

shifted 0, 90, 180, or 270 deg in phase from that of the input signal. 

An external 10-Hz oscillator, which also generates the 10-Hz sine wave 

used for producing the hydrodynamlc modulation, produces the sinu

soidal signal which is applied to the input of OAS, a voltage fol

lower. the output of 0A8 is connected to the phase shifter, a hybrid 

circuit. The operation of this circuit depends on the position of S2, 

the Quadrant switch. With S2 in the 0 deg position, 0A9 operates as a 

voltage follower, and its output is in phase with the input signal. 

When S2 is in the 180 deg position, 0A9 is connected as an inverting 

amplifier, and its output is consequently 180 deg out of phase from 

the input. When S2 is in the 90 deg position, 0Â9 is connected as a 
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Figure IV-7. Schematic diagram of phase shifter 

OAS, 0A9 — LM747 dual operational amplifier; S2 — 2-pole, 5-position rotary switch. 

Variable resistor for R5; lOK VU resistor in series with lOK trimmer potentiometer. 
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constant amplitude phase shifter, based on the circuit from Deboo and 

Burrous (88). If the resistance of R5 is equal to the magnitude of 

the reactance of the 1.0-pF capacitor, 15.9 Kn. at 10 Hz, the output of 

OAS lags 90 deg In phase behind that of the Input. When the positions 

of the resistor and capacitor in this circuit are Interchanged, as ef

fected by moving S2 to the 270 deg position, the output of 0À9 lags the 

input by 270 deg. Thus, by moving S2 over its 4 positions, the 10-Hz 

output signal may be shifted over the 4 quadrants of the complex plane, 

without affecting its amplitude. 

To align the phase shifter, a sinusoidal input signal (10.00 Hz, 

10 V ) is applied to the input of 0A8. With S2 in the 90 deg position, 
pp 

R5 is adjusted until the phase shift observed at the output of 0A9 is 

exactly 90 deg. 

5. Reference generator 

The schematic diagram of the reference generator is shown in 

Figure IV-8. The function of this section is to produce the 10-Hz 

square wave which serves as the reference signal for the phase-selective 

detector. The reference generator consists of a phase-locked loop (PLL), 

a voltage follower with variable gain, OAIO, and a Schmltt trigger with 

adjustable threshold, OAll. 

The circuit for the phase-locked loop is adapted from representa

tive circuits published by National Semiconductor (102). In the present 

application, the PLL is used to generate a 10-Hz triangular wave which 

is locked in frequency and phase to that of the input signal to the PLL. 

The PLL is able to lock onto a 10-Hz signal of low amplitude in the 
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Figure IV-8. Schematic diagram of reference generator 

PLL — National semiconductor LMSôS phase-locked loop; OAIO — one section of 121747 
dual operational amplifier; 0A4 is the other section; OAll — I.M301 operational 
amplifier; Dl, D2 — 1N957B Zener diodes (6.8 V, 5%); VR — Voltage regulator; 4 1N914 
diodes and 1N747 Zener diode; P7, P8, R8 ~ 10-turn trlnmer potentiometers; P9 — 
10-turn precision potentiometer with calibrated dial; S3a, S3b — DPDT switch. 
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presence of an unwanted signal of a different frequency (e.g., 60 Hz) 

and much higher amplitude. This feature is important in cases where 

the FLL is used to generate an internal reference signal from an input 

signal having a poor signal-to-noise ratio. 

The LM565 chip is powered from a + 6.8-V regulated supply constructed 

from CI, C2, Dl, D2, R6, and R7. The free-running frequency of the 

voltage-controlled oscillator (VCO) in the PLL is set by R8 and 03. 

C4, C5, and R9 comprise the loop filter for the PLL, which is designed 

according to the formulas and procedure published by the manufacturer 

(103). The loop filter is designed for a natural loop frequency of 

0.382 Hz, a damping factor of 0.722, and a loop bandwidth of 0.204 Hz. 

These values are chosen to provide minimum lock-in time for the FLL to 

applied signals consistent with sufficient filtering of the error signal. 

The reader is referred to the literature for further discussion of loop 

filters for PLLs (102). 

The free-running frequency of the VCO is set to 10.00 Ha in the 

absence of an input signal to the LIA. This ensures that the VCO is 

running at its natural frequency. R8 is adjusted until the triangular 

wave observed at the output of 0Â10 has a frequency of 10.00 Hz. 

All resistors in the FLL circuit are 5% fixed composition units, 

with the exception of RIO, which is a 1% metal film resistor. CI, 

C2, C4, and C5 are A1 electrolytic capacitors. 

The voltage follower, OAIO, amplifies the triangular wave generated 

by the FLL and provides the high input impedance necessary to ensure 

linearity of the waveform. The gain of this stage is governed by the 

setting of the Gain Set potentiometer, F7. The triangular wave has an 
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amplitude of 2.2 V at pin 9 of the LM565 end 8.1 V at the output of 
PP PP 

OAIO. OAIO is AC coupled to 0À11, the Schmitt trigger with adjustable 

threshold. The triangular wave present at the output of OAIO is exactly 

in phase with the input signal to the PLL. 

OAll produces the 10-Hz square wave which is applied to the phase-

selective detector as the reference signal. The voltage regulator (VR) 

at the output of OAll clamps the positive and negative portions of the 

square wave at equal and opposite potentials, + With S3b in the 

Int. position, OAll functions as a normal comparator, and the square 

wave generated is 180 deg out of phase from the input signal to the 

PLL. Since S3a and S3b are linked, the input signal to the PLL is ob

tained from the output of 0A3, the second 10-Hz tuned amplifier. The 

PLL thus tracks the phase of the input signal to the LIA, and the phase-

selective detector functions as a full-wave rectifier. In the phase-

selective detector, 0A5 is connected to the 4-quadrant multiplier such 

that a maximum positive output is obtained when the signal and reference 

waveforms are 180 deg out of phase. The output from OA? thus is propor

tional to the absolute peak-to-peak magnitude of the input signal to 

the LIA. The Symmetry control, P8, is set such that the positive and 

negative portions of the square wave observed at point 6 are of equal 

duration. 

With S3b in the Ext. position, OAll functions as a Schmltt trigger. 

The switching threshold of this Schmltt trigger, + Ê ,̂ is directly 

proportional to the setting of the Phase potentiometer, P9. The input 

signal to the Schmltt trigger is a triangular wave with no DC component. 

By definition, the triangular waveform possesses alternately positive-
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going and negative-going linear segments of equal and opposite slope. 

During the negative-going segment of the triangular wave, the Schmitt 

trigger switches state at that point where the potential of the tri

angular wave becomes lower than - Analogously, the Schmitt trigger 

switches state during the positive-going segment of the triangular 

wave at that point where the potential of the triangular wave exceeds 

+ The triangular wave applied to the input of the Schmitt trigger, 

e(t), changes from e(t) = 0 to its peak values, e(t) = + over a 

period of 1/4 cycle. Increasing the switching threshold of the Schmitt 

trigger from E = 0 to E = + E , therefore moves the points on the 
sw sw — peak 

triangular waveform at which the Schmitt trigger changes state from the 

zero crossing points to the positive and negative peaks of the triangular 

wave, an effective Increase in phase shift from 180 deg to 270 deg. 

Intermediate values of Ê  ̂result in proportionately lower phase shifts. 

For values of E greater than + E , , the Schmitt trigger ceases to 
sw — peak 

function, since the triangular wave fails to reach the switching 

threshold. 

Use of a 10-turn potentiometer with dial for the Phase control 

permits direct display of the phase shift introduced by the Schmitt 

trigger. To align the circuit, the Phase control is set to 9.00 turns 

and P7, the Gain Set potentiometer, is advanced until 0Â11 fails to 

trigger, P7 is then turned back until OAll just starts to produce a 

stable square wave. When multiplied by 10, the reading of the dial of 

the Phase control represents the phase shift introduced by the Schmitt 

trigger. 

For use in other quadrants, the phase shifts introduced by the 
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phase shifter (indicated by the setting of the Quadrant switch) and the 

phase shift introduced by the Schmitt trigger (read on the Phase 

control) are summed. 

6. Evaluation and testing 

Tables IV-1 through IV-3 present the results of experiments de

signed to verify the performance of the lock-in amplifier described in 

this chapter. Table IV-1 shows the linearity of the response of the LIA 

to 10-Hz input signals with the Quadrant switch in the 0, 180, and 270 

deg positions. Signals in quadrature to the reference phase are re

jected by a ratio of 167 to 1, or 44 dB. The linearity of the AC Gain 

control, PI, is displayed in Table IV-2. The output of the LIA, with 

the reference and signal waveforms in phase, is presented as a function 

of the setting of PI over its range. Linearity to within 2 parts per 

thousand was observed in both experiments. 

The output voltage from a lock-in amplifier as a function of the 

phase difference between the signal and reference waveforms is readily 

predicted from theoretical considerations. Maximum output is obtained 

from a phase-selective detector when the signal and reference waveforms 

are in phase. The unflltered output of the phase-selective detector 

operated under such conditions, using a sinusoidal signal of amplitude 

Eg and a reference square wave of amplitude is identical to that 

of a full-wave rectifier. The average DC value, ê  of this un

flltered signal is given by Equation IV-2. 

'o.max = (IV-2) 
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Table IV-1. Linearity of LIA response to 10-Hz signalŝ  

CQ from 10-Hz ê N to LIÂ  @0 of LIA (V DC) at quadrant 
oscillator (V ) (mV ) 0 deg 180 deg 270 deg 

PP PP 

0.00 0.000 - 0.005 0.007 

0.100 0.498 0.983 - 0.998 

0.200 0.995 1.98 - 2.00 

0.300 1.49 2.98 - 3.00 

0.400 1.99 3.98 - 4.00 

0.500 2.49 4.98 - 5.00 

0.600 2.98 5.98 - 6.00 

0.700 3.48 6.98 - 7.00 

0.800 3.98 7.98 - 8.00 

0.900 4.48 8.98 - 9.00 

1.000 4.98 9.99 - 10.00 

ÂC Gain = 8.29 turns; Phase = 0 deg; Quadrant as noted. 

Înput signal to LIA fed through a 2.00 Kn. resistor for attenua
tion. Values of ê N calculated on basis of 10.0 Kfl/2.00 HA voltage 
divider so formed. 
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Table IV-2. Linearity of AC Gain control on LIA* 

AC Gain setting ê  of LIA 
(turns) (V DC) 

0.00 - 0.005 

1.00 0.977 

2.00 1.98 

3.00 2.98 

4.00 3.99 

5.00 5.00 

6.00 6.00 

7.00 7.01 

8.00 8.01 

9.00 9.01 

10.00 10.00 

®̂in LIA = 0.837 Vgp through 10.0 Kjv/2.00 MA voltage divider; 
Quadrant = 0 deg; Phase = 0 deg. 
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Table lV-3, Phase linearity of Schmitt trigger with adjustable 
threshold 

9̂ isp (deg) Calculated values for d) (deg) ; Quadrant as noted 
(from P9 setting) 0 + 0 90 + 0 180 + 0 270 + 0 

0.0 0.00 - 0.06 0.00 - 0.34 

5.0 5.73 4.82 5.13 4.58 

10.0 9.94 9.85 9.93 9.50 

20.0 19.95 19.82 20.05 19.45 

30.0 29.89 29.80 29.89 29.47 

40.0 39.91 39.79 39.91 39.42 

45.0 44.93 44.83 44.93 44.42 

50.0 49.91 49.91 49.91 49.38 

60.0 59.93 59.88 59.93 59.43 

70.0 69.94 69.88 69.94 69.23 

80.0 80.04 80.06 79.97 79.11 

85.0 84.95 84.87 84.95 83.72 

90.0 90.00 90.00 90.00 86.38 
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Equation IV-2 results from the same averaging procedure derived in 

Equations III-2 through III-4 in the preceding chapter. The factor 

kÊ Eref in Equation IV-2 results from the multiplication which occurs 

in the 4-quadrant multiplier. The constant k is the scaling factor of 

the 4-quadrant multiplier. 

The average value of the output from a phase-selective detector may 

also be calculated for cases where the signal and reference waveforms 

are not in phase. In such cases, it is advantageous to use the reference 

waveform as the frame of reference for the time variable, tut. In 

cases where a phase lag is artificially Imposed on the reference 

waveform, the sinusoidal signal may be considered to lead the reference 

waveform by a phase constant, 0. The signal waveform is thus expressed 

by Equation IV-3: 

For the period from cut = 0 to U)t = TT, the reference waveform, a square 

wave, has a value of Ê ^̂ . The average value of the output signal, 

ê (0), is obtained by multiplication of the signal and reference wave

forms, as shown in Equation IV-4. 

Evaluation of the integral in Equation IV-4 and simplification of the 

result using the trigonometric identity cos(n + 0) = - cos 0 yields the 

average value as a function of the phase shift, 0: 

eg(t) = EgSin(wt + 0) (IV-3) 

ei (0) = (l/n)kE E sin(u)t + 0) d(u)t) 

0 

(IV-4) 

6̂ (0) = (2/TT)kEgÊ ^̂ C08 0 (IV-5) 
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The value of e (0) relative to the maximum value, e , is obtained 
o o,max 

by combination of Equations IV-2 and IV-5: 

= COS * (1̂ .6) 

The calculated phase angle, which is tabulated in Table IV-3, is ob

tained by a simple transformation of Equation IV-6, as shown in Equa

tion IV-7. 

This calculated phase angle, which represents the actual phase shift 

imparted to the reference waveform, may be compared to the displayed 

phase shift, indicated by the setting of P9. 

Data obtained in this manner using the LIA are summarized in Table 

IV-3. The phase shifts observed were within 1 deg of those predicted 

from theory for the Schmltt trigger, with the exception of the final 2 

values. It should be noted that the errors in these latter 2 data 

resulted from corresponding errors of only 2 parts per thousand in the 

actual output of the LIA. The calculated values for phase shifts 

greater than 180 deg were obtained by application of elementary trigono

metric identities to Equation IV-7. Prior to recording the data from 

which the values of 0 shown in Table IV-3 were calculated, the AC Gain 

control on the LIA was set such that e was 10.00 V DC. 
o,max 

The application of the LIA to measurement of the phase of the signal 

waveform is discussed in Section F of Chapter V of this dissertation. 

From the data presented in Tables IV-1 and IV-2, an expression 

for the sensitivity of the LIA was obtained. This expression was 
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multiplied by the current sensitivity of the potentiostat to obtain the 

overall sensitivity of the system comprising the LIA and potentiostat. 

The relationship among the experimental variables is summarized by 

Equation IV-8; 

S = lOP/GT (IV-8) 

In Equation IV-8, S represents the overall sensitivity of the system in 

pAppV ̂  and P represents the current sensitivity of the potentiostat 

in pA V T denotes the setting of the AC Gain control in turns, and 

G represents the internal voltage gain of the LIA. Prior to each experi

ment, G was experimentally verified by observing the DC output voltage, 

ê , from the LIA for a known AC input voltage, ê ^̂  expressed in V̂ .̂ 

G was then readily calculated from Equation IV-9: 

G = lOê /ê T̂ (IV-9) 

1. Preparation for experiments 

Prior to performing experimental work with the LIA, the external 

10-Hz oscillator which generates the sinusoidal signal used for hydro-

dynamic modulation and as the reference phase must be centered in the 

passband of the 10-Hz tuned amplifier in the LIA. Either of 2 align

ment procedures may be employed to effect this goal. In either proce

dure, the 10-Hz oscillator is first connected to the Ref. Phase and Ext. 

Input jacks on the LIA. Switch SI is set to the Ext. Input position, 

switch S3 to the Int. position, and the output of the 10-Hz oscillator 

and/or the setting of the AC Gain control are adjusted to obtain a DC 

output voltage of 8 to 9 V, The frequency of the oscillator Is then 
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adjusted according to either of the 2 procedures given below. Both 

alignment procedures yield equivalent results. 

In the first alignment procedure, the vertical input of an oscillo

scope is Connected to the Scope Monitor Jack, and the horizontal input 

of the oscilloscope is connected to the output of the external 10-Hz 

oscillator. The pattern displayed on the oscilloscope will appear as 

a vee-shaped figure ifith loops for the 2 legs of the vee. The frequency 

of the external 10-Hz oscillator is then adjusted until each loop col

lapses, forming a straight line. The pattern displayed by the oscillo

scope now appears as a perfect vee with straight, linear legs. This 

perfect vee indicates correct adjustment of the LIA and 10-Hz oscillator. 

An alternate alignment procedure dispenses with the need for an 

oscilloscope. In this procedure, the Quadrant switch is set to 90 deg. 

With the Phase control set to 0,00 deg, switch S3 is moved to the Ext. 

position. The DC output of the LIA decreases from the original value 

of 8 to 9 V to a lower value, normally less than 1 V. The frequency of 

the 10-Hz oscillator is then adjusted until the DC output of the LIA is 

0.00 V. This null condition indicates correct alignment of the LIA. 

For in-phase operation, the Quadrant switch is returned to the 0 deg 

position. 

For operation of the LIA with the HSR rotator, the reference phase 

must be further adjusted to compensate for the phase shift introduced 

by the rotator. With the external 10-Hz oscillator connected to the 

MSR rotator as described in the following section, the signal input to 

the LIA is moved from the 10-Hz oscillator to the Output jack on the 

MSR rotator. The voltage at this jack is derived from the tachometer 
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output of the rotator and, consequently. Is in phase with the actual 

variations in rotation speed of the electrode. With S3 on the LIA in 

the Int. position, the AC Gain control is adjusted to obtain a DC 

output voltage of 8 to 9 V for a 0.10 input signal to the MSR 

rotator. The Quadrant switch is moved to the 90 deg position, and S3 

is moved to the Ext. position. Without changing the frequency of the 

10-Hz oscillator, the Phase control is adjusted until the DC output of 

the LIA is 0.00 V. The phase shift displayed on the dial of the Phase 

control represents the phase lag introduced by the MSR rotator. Experi

mentally, this value is observed to be 25.6 to 26.2 deg at 10.0 Hz. 

For in-phase operation of the LIA, the Quadrant switch is returned to 

the 0 deg position. 

The LIA may be modified to operate at frequencies other than 10 Hz. 

This is most readily effected by changing the values of the 1.0-piF 

capacitors in the 2 multiple-feedback resonators, the phase shifter, and 

the PLL circuit (C3). These modifications adjust the resonant frequency 

of the tuned amplifier, the free-running frequency of the VCO in the PLL, 

and the frequency for quadrature operation of the phase shifter. Since 

each of these frequencies is inversely proportional to the values of 

these capacitors, and each capacitor in the present circuit has a 

value of 1.0 pF, the capacitors all must be changed to a single new 

value, given by Equation IV-10, where f̂ ^̂  is the new frequency. 

<=new = 

The modified LIA retains the same gain and operational capabilities as 

the present unit, and the alignment procedures, except for the 
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substitution of f̂ ^̂  for 10 Hz, remain unchanged. The external oscil

lator must be modified to operate at f̂ ^̂  as well. The LIA, when modi

fied In this manner, la well-suited to use In AC polarography and related 

applications In the 10-1000 Hz range. For operation at these higher 

frequencies, the cutoff frequency of the LP filter and the loop frequency 

of the PLL also may be proportionally Increased, with corresponding de

creases In the response time of the LIA. 

E. 10-Hz Oscillator 

The schematic diagram of the 10-Hz oscillator constructed for this 

work Is shown In Figure IV-9. OAl and associated components are con

nected as a Wlen-brldge oscillator, with amplitude stabilization pro

vided by Ql, an N-channel FET. The design is adapted from published 

circuits for similar Wlen-brldge oscillators (104, 105). The output 

frequency of the Wlen-brldge oscillator is given by Equation IV-11, 

where R and C are the resistances and capacitances noted in 
osc osc 

Figure IV-9. 

R1 and PI control the feedback stabilization of the oscillator. In 

this circuit, R1 and PI are adjusted until a stable, undlstorted sine 

wave having an amplitude of 10.0 is observed at point H. The high 

input impedance presented by QA2, a voltage follower, ensures linearity 

of ê , measured at point J, as a function of the setting of P2, the 

Output Level control. R2 is adjusted to give a l.OO-V̂  ̂signal at the 
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Figure IV-9. Schematic diagram of 10-Hz oscillator 

OAl, 0A2 — LM741 operational amplifiers; D1 — 1N914 diode; Q1 — 2N3819 N-channel 
FET; PI, Rl, R2 — 10-turn triimner potentiometers; P2 — 10-turn precision potentiometer 
with calibrated dial; R3 — 2 sections of lOOK dual linear taper potentiometer (Allen-
Bradley part No. JD1N200P104UA); R4 — 2 sections of IK dual linear taper potentiometer 
(Allen-Bradley part No. JD1N200P102UA). 
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ungrounded end of F2, as measured with an oscilloscope. P3 and P4, 

the Coarse and Fine frequency adjustments, are both dual, linear-taper 

potentiometers. 

For use with the LIA, the 10-Hz oscillator produces both the 

0-1.0 Vpp signal used to produce the hydrodynamic modulation of the 

vibrating or rotating electrode and the lO-V̂  ̂signal used as the phase 

reference for the LIA. The lO-V̂  ̂output of the oscillator, point H, 

is connected to the Input of the phase shifter in the LIA. In experi

ments using hydrodynamic modulation at RDEs, the 0-1.0 output of 

the 10-Hz oscillator, point J, is connected to the Input jack of the MSR 

rotator. 

F. AM/FM Generator 

A schematic diagram of the AM/FM generator, which produces the 

waveforms used to drive the vibrating electrode, is shown in Figure IV-10. 

The designations used in this diagram and its description follow the 

established nomenclature (106) applied to radlotelephony employing 

amplitude modulation (AM) and frequency modulation (FM). The circuit 

consists of 4 sections: a sine-wave generator, ICI; a variable-gain 

voltage follower, 0Â3; a summing amplifier, 0A4; and an amplitude 

modulator, based on a 4-quadrant multiplier, IC2. Offset potentiometers 

are not used with 0A3 and 0A4. The AM/FM generator and the 10-Hz 

oscillator were both mounted in an 8 x 6 x 5-in. steel box. Both cir

cuits were powered by an Analog Devices model AD-904 power supply 

(+ 15 V at 50 mA). 
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Figure IV-10. Schematic diagram of AM/FM generator 

ICI — Intersil 8038 function generator chip; IC2 — Analog Devices ZM605 4-quadrant 
multiplier; OAS, 0A4 — 121741 operational amplifier; P3, P12 — 10-turn precision 
potentiometers with calibrated dials; R5, R7 — 1-turn linear-taper potentiometers; 
P4, P5, P6, P7, P8, P9, PIO, Pll, R6 — 10-turn trimiœr potentiometers; J1 — Miniature, 
closed-circuit phone jack. 
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The circuit for the sine-wave generator, which employs an Inter

sil 8038 integrated circuit, was adapted from representative circuits 

given in the data sheet for the integrated circuit (107). The data 

sheet was provided by Poly Faks, Inc., South Lynnfield, MA, the sup

plier for the 8038. The sine-wave generator consists of a triangular-

wave VCO and a shaping network. The shaping network converts the 

triangular waveform into a close approximation of a sine wave. The 

frequency of oscillation, f̂ , depends on the values of and Ĉ , 

which are denoted in Figure IV-10. The relationship between R̂ , Ĉ , 

and f̂  is given by Equation IV-12: 

f = 0.15/R C (IV-12) 
c c c 

Application of a 10-Hz signal to point H introduces an AC signal to the 

VCO via pin 8 of the 8038. The output of the sine-wave oscillator thus 

becomes an FM signal, modulated at 10 Hz, with a center frequency of f̂ . 

The frequency deviation of the FM signal is proportional to the ampli

tude of the AC signal applied to pin 8 of the 8038, which is determined 

by the setting of P3. The maximum value of f̂  is set to 510 Hz by ad

justment of R6. R5 and R7 provide coarse and fine adjustment, 

respectively, of f̂ . The minimum value of f̂  is approximately 26 Hz, 

with component values as shown. 

Adjustment of P4 varies the syrranetry of the triangular and sinu

soidal waveforms produced by the 8038. In this circuit, P4 is adjusted 

such that the triangular wave observed at pin 3 of the 8038 possesses 

positive- and negative-going portions of equal and opposite slope. This 

minimizes distortion of the sinusoidal waveform. P5 and P6 determine 
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the characteristics of the sinusoidal shaping network and are adjusted 

to minimize distortion of the sine wave observed at pin 2 of the 8038. 

OAS is a voltage follower which amplifies the sinusoidal output of 

ICI to a level of 10 The output of OAS is the carrier signal 

which is applied to the 4-quadrant multiplier. 0A4 is a summing ampli

fier which combines the 10-Hz and DC components required to produce an 

AM signal at the output of the 4-quadrant multiplier (p. 68 of 100). 

The modulation percentage of the AM signal is directly proportional to 

the amplitude of the 10-Hz signal applied to point J. P7 is adjusted 

such that a l.O-V̂  ̂signal at point J produces an AM signal with 100% 

modulation at the output of the 4-quadrant multiplier, point K. After 

P7 has been set, P8 is adjusted such that the output signal from the 

4-quadrant multiplier has an amplitude of 10 in the absence of 

amplitude modulation. 

The 4-quadrant multiplier, IC2, is connected according to the recom

mendations of the manufacturer, Zeltex, Inc., Concord, MA (108). The 

modulating signal, generated by the 10-Hz oscillator, is applied to thé 

X axis of the 4-quadrant multiplier, and the carrier signal, generated 

by ICI, is applied to the Y axis. The product of these 2 signals ap

pears as an AM signal at the output. P9, PIO, and Pll are the X, Y, 

and Output offset potentiometers, respectively. To adjust P9, the non-

inverting input of OAS is grounded and a l.O-V̂ ,̂ 10-Hz signal is ap

plied to point J. P9 is then adjusted until no 10-Hz component is ob

served at the output of IC2, point K. The connection grounding the non-

inverting input of OAS is then removed, the alignment loop connecting 

P7 to the - 15 V line is temporarily disconnected, and the 10-Hz signal 
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applied to 0A4 is reduced to 0 V . PIO is then adjusted until no AC 
PP 

component at the carrier frequency is noted at point K, and Pll is ad

justed such that the DC level of the output of IC2 is 0.000 V. After 

Pll is adjusted, the alignment loop is reconnected. The adjustments 

described for P7 and P8 in the preceding paragraph are then repeated, 

completing the alignment of the AM/FM generator. 

Table IV-4 summarizes the observed percentages of modulation for 

the output signal from the AM/FM generator as a function of the 

setting of the Output Level control, P2, in the 10-Hz oscillator. The 

percentages were calculated from measurements of the trapezoidal pat

terns formed by application of the 10-Hz modulating signal and the AM 

output signal to the horizontal and vertical inputs of an oscilloscope, 

respectively. Such trapezoidal patterns are routinely used for evalua

tion of the performance of AM transmitters, and their characteristics 

and interpretation are discussed in the literature (pp. 369, 375, 376 of 

92). For the AM/FM generator, the percentage of modulation is directly 

proportional to the setting of P2 to within 0.6%, as is evident from 

inspection of Table IV-4. Errors in the measurement of the trapezoidal 

pattern displayed on the oscilloscope contributed significantly to the 

observed deviations from linearity. 

Following suitable amplification, such AM signals may be applied 

to the speaker, which functions as the vibrator for the vibrating elec

trode. By means of this technique, hydrodynamic modulation results from 

the modulation of the vibrational amplitude. The technique is ac

cordingly referred to as HMVE(AM) and is evaluated in Chapter VI of 

this dissertation. 
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Table IV-4. Observed percentages of modulation vs. setting of Output 
Level control (P2) 

P2 setting Percentage of modulation of 
(turns) AM output signal (%)& 

0.00 0.0 

1.00 10.0 

2.00 20.3 

3.00 30.4 

4.00 40.6 

5.00 50.4 

6.00 60.5 

7.00 70.4 

8.00 80.2 

9.00 89.9 

10.0 100.0 

f̂ = 240.0 Hz. 
c 
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The AM and FM characteristics of the output signal from the AM/FM 

generator may be Independently varied by adjustment of P2 and P3, 

respectively. The AM/FM generator is constructed such that the output 

signal resulting from simultaneous AM and FM is characterized by minimum 

instantaneous frequency at periods of minimum carrier amplitude (troughs 

of the modulation envelope) and by maximum Instantaneous frequency at 

periods of maximum carrier amplitude (peaks of the modulation envelope). 

Following amplification, this composite AM/FM signal is applied 

to the speaker. At the vibrating electrode, pure FM vibrations of 

constant amplitude are produced, and hydrodynamic modulation results in 

this case from the modulation of the vibrational frequency. The tech

nique is consequently referred to as HMVE(FM). The AM component of the 

input signal to the speaker compensates for the frequency response of 

the vibrating electrode, which has been illustrated in Figure III-3. 

In order to achieve constant vibrational amplitude by AM compensation, 

the range of vibrational frequencies covered by the FM signal must be 

sufficiently small such that the corresponding portion of the graph shown 

in Figure III-3 is linear. To set the AM compensation to the correct 

value, the frequency deviation of the FM signal is set to the desired 

value, and the Output Level control, P2, is adjusted until the extremes 

of vibration cease to "tremble" at 10 Hz and become stationary. 

The AM Ramp jack, Jl, permits a DC ramp to be applied to the 

summing amplifier, 0A4, in place of the DC component normally obtained 

from P7. Using the DC ramp, the carrier voltage at the output of the 

4-quadrant multiplier, and consequently the vibrational amplitude, may 

be linearly increased from zero to a desired maximum value as a function 
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of time. Application of the DC ramp and the current output of the 

potentiostat to the X and Y axes, respectively, of an X-Y recorder per

mits recording of the limiting current at a vibrating electrode as a 

function of the vibrational amplitude or vibrational Reynolds number. 

This procedure may be applied in the presence or absence of an AM 

component to the vibration. 

The level of output signal applied to the audio amplifier, which 

is connected to point L, is determined by the setting of potentiometer 

P12. 

G. Audio Amplifier 

The amplifier employed in this work was a model 215 stereo amplifier 

which was purchased in kit form from Southwest Technical Products Corp., 

San Antonio, TX, Only 1 of the 2 channels was used in this work. For 

the determinations of Hg described in Section IX, a model 540 stereo 

amplifier from the same manufacturer was used. The 540 amplifier was 

modified to permit simultaneous and independent operation of 2 vibrating 

electrodes and was driven by a VIZ model WA-504B signal generator, 

which served as the sine-wave oscillator. The signal generator was 

purchased from Fordham Radio, Farmingdale, NY. 

The maximum power output required for the operation of the vibrating 

electrodes described in this work was 1.5 W RMS, and the choice of 

audio amplifier was therefore not critical. 
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V, HYDRODYNAMIC BEHAVIOR 

As has been mentioned In Chapter I of this dissertation, the In

creased sensitivity of vibrating electrodes in electroanalysls results 

from the decrease in the thickness of the diffusion layer produced by 

the motion of the solution past the surface of the electrode. This 

motion arises from the hydrodynamlc flow patterns which are established 

in the vicinity of the electrode as a result of its vibration. An 

understanding of the hydrodynamlc behavior of vibrating electrodes is, 

therefore, of fundamental Importance to the application of vibrating 

electrodes to quantitative, trace-level analyses. This chapter pre

sents the results of experiments which were undertaken in an attempt 

to provide insight into the hydrodynamlc behavior of vibrating electrodes 

and into the nature of the flow patterns induced by the vibration of 

the electrode. 

A. Literature 

The circulation of air prevailing in the vicinity of vibrating 

reeds and cylinders has been studied by West (109), who observed 3 

separate regimes of circulation. According to West, the first flow 

regime occurs at low vibrational velocities and is analogous to the 

flow which takes place "when a lamina moves forward in a perfect fluid." 

It Is characterized by 2 elliptical sets of streamlines which are 

centered laterally opposite the plane of vibration. At somev̂ at 

higher Rê  values, not specified in the article, a gradual transition 

to the second flow regime takes place. 
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The second regime occurs at Rê  values up to approximately 40 and 

Is characterized by circulation In the form of a 4-leaved rose about 

the vibrating reed or cylinder, with the 4 lobes centered at angles, 

0̂ , of 45, 135, 225, and 315 degrees from the direction of vibration. 

West accordingly models the circulation in polar coordinates by 

Equation V-l. 

 ̂= (â /r̂ )sln 28̂  (V-l) 

In Equation V-l, \|i is the flow function, â  is a constant which is 

proportional to the amplitude of vibration, and r is the distance on 

the polar plot from the center of the electrode at the center of vibra

tion. Photographs of the experimentally observed flow patterns of 

smoke particles entrained in air circulating about vibrating reeds 

and cylinders supported this model. 

The third regime of circulation is similar to the second except 

that each of the 4 lobes described above shrinks to the immediate 

vicinity of the reed, and each lobe is bounded by a second, similar 

lobe at the same angle from the direction of vibration. Each of these 

4 outer lobes is much larger than the inner lobes and circulates in a 

direction opposite to that of the corresponding inner lobe. The in

tensity of circulation is far greater than that observed in the inner 

lobes. The appearance of these outer lobes marks the onset of the 

third flow regime and is described by West as "catastrophic." The 

onset of this third regime occurs at Rê  values from 40 to 45. 

Radol has compared the hydrodynamlc behavior of vibrating cylinders 

to that of stationary cylinders subjected to linear flow perpendicular 
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to the axis of the cylinder (33, 75, 110, 111). The Reynolds number. 

Re, used to characterize such flow, is identical to Rê  except that 

the velocity of the linear flow is substituted for the average vibra

tional velocity, v̂ ĝ. According to Radoi (75, 112) and Eck (113), 

the flow about the cylinder at Re values from 1 to 32 is characterized 

by the. existence of 2 Foppl vortices which are held captive behind the 

cylinder. At Re = 10, these Foppl vortices "cover the entire rear 

surface of the cylinder." The 2 vortices remain fixed behind the 

cylinder at increasing Re values up to 32, at which point they begin 

to be alternately torn away from the rear surface of the cylinder, 

forming "turbulence elements" in the backwash of the cylinder. These 

turbulence elements first appear at Re = 32 and become stable, taking 

on a turbulent character, at Re = 50. For Re values greater than 60, 

a strongly periodic, alternating character to these turbulence elements 

is noted, forming a K&rmân vortex street in the backwash of the cylinder. 

Radoi (112) also studied the angular dependence of the mass trans

port to a rectangular microelectrode situated flush with the surface 

of a nonconducting cylinder. The cylinder was placed in a flowing 

stream of electrolyte, and the placement of the microelectrode rela

tive to the direction of flow could be varied frcm 0 to 180 deg in a 

clockwise or counterclockwise direction by rotation of the cylinder. 

The observed relationship between the limiting current density and the 

angular placement of the electrode was presented in polar coordinates, 

and the resulting graphs were butterfly-shaped, with an axis of sym

metry passing through the center of the cylinder in the direction of 

flow. At Re = 110, the maximum limiting current density was observed 
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at angles of 40 to 70 deg from the direction of flow, and a minimum 

value was observed at 105 to 115 deg. A secondary maximum was ob

served at 130 to 150 deg. At Re = 400, the 3 regions occurred at 40 

to 70, 95 to 115, and 115 to 125 deg, respectively. 

Homann (114) has also studied the hydrodynamlc flow patterns pre

vailing at cylinders in flowing streams. According to his photographs 

and description, the formation of Foppl vortices is not visible at Re 

values less than 6. The captive pair of Foppl vortices remains fixed 

at the rear of the cylinder at Re values from 6 to 25 or 30. At 

slightly higher Re values, the relative size of each vortex begins to 

oscillate. Each vortex alternately grows in size at the expense of 

the other. The backwash of the cylinder oscillates at the corresponding 

frequency. At Re values greater than 37, the vortices are alternately 

shed from the cylinder, forming the Kârmin vortex street. 

Blevlns (115) also describes the behavior of cylinders in flowing 

streams. For Re values less than 300, Blevlns distinguishes 6 regimes 

of flow. Unseparated, fully laminar flow occurs at Re values less 

than 5. A pair of fixed Foppl vortices at the rear of the cylinder is 

characteristic of the region commencing at Re = 5 to 15 and extending 

to Re = 40. Within this region, the 2 vortices elongate with increasing 

Re values. At about Re = 40, the longer of the 2 vortices breaks 

away, commencing the alternate shedding of vortices described above. 

This process continues at a periodic rate, forming the Karmàn vortex 

street. The periodic alternate shedding of laminar vortices is charac

teristic of 2 regimes of flow, which extend from Re = 40 to 90 and from 

Re = 90 to 150, respectively. The transition to turbulence in the 
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vortex street occurs in the region form Re = 150 to 300, Above Re = 

300, the vortex street is fully turbulent. Blevins notes that the 

transition to turbulence in the boundary, layer of the cylinder occurs 

at Re values on the order of 3 x 10̂ . 

Studies of the dependence of the heat transfer from rods and 

cylinders in flowing gaseous and liquid streams were performed by 

Ulsamer (116) and Hilpert (117). In the results of these studies, 

the Nusselt number was expressed as an exponential function of Re, 

according to Equation V-2: 

Nu = kRê  (V-2) 

The Nusselt number, Nu, is related to the heat transfer in the same 

manner as the Sherwood number, Sh, is related to the mass transfer (117). 

Hence, the results of these experiments indicate the expected exponen

tial dependence of the mass transport to a cylindrical electrode on the 

Reynolds number. Table V-1 summarizes the results of the experiments 

of Ulsamer and Hilpert. 

Evidence for the existence of transitions in the hydrodynamic flow 

patterns produced by vibrating electrodes has been cited in Chapter II 

of this dissertation (5, 29, 34, 36, 43, 45). 

B. Enhancement of Mass Transport 

Â measure of the enhancement of the mass transport effected by 

vibration of an electrode may be gathered by comparison of the 

experimentally observed limiting current for the reaction of a given 



www.manaraa.com

112 

Table V-1. Exponential dependence of Nusselt number on Reynolds 
number 

Re range z in Equation V-2 Fluid Ref. 

0.1-4 0.305 Air 116 

4-50 0.41 Air 116 

50-1000 0.50 Air 116 

0.1-50 0.385 Liquid 116 

50-10000 0.50 Liquid 116 

1-4 0.330 Air 117 

4-40 0.385 Air 117 

40-4000 0.466 Air 117 
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electroactive species at a vibrating electrode to the corresponding 

limiting current which is predicted by the Levlch equation, Equation 1-8, 

for an RDE of the same surface area. To perform this comparison. It 

is most Instructive to calculate an "apparent rotation speed," u) , app 

for the vibrating electrode. The value of u) is calculated from 
®PP 

the experimental values of and A for the vibrating electrode. 

These experimental values and the values of n, D, and for the 

electroactive species, as well as the value of v for the solution, 

are substituted into Equation 1-8, which is then solved for u)̂ . The 

value of (JD̂  so calculated is designated and represents the speed 

at which an RDE of the same area as the vibrating electrode would have 

to rotate in order to achieve the same value of with the same solu

tion used with the vibrating electrode. 

An experiment employing 1.018 mM I in 0.5 M Ĥ SÔ  was performed 

in this manner with Electrode A. The solution was deaerated with 

to minimize oxidation of the I by atmospheric oxygen. The potential 

of the electrode was maintained at 0.0 V vs. SCE except during the 

brief measurements of Iĵ , which were conducted at + 0.800 V vs. SCE 

for each frequency of vibration. This procedure minimised the oxida

tion of l" by the electrode, which otherwise would have seriously 

affected the results through deletion of the I in the bulk of the 

solution. The surface area of the vibrating electrode was calculated 

from Equation V-2. 

A = ndgLg_2 + rTd̂ /4 (V-2) 

This area. A, represents the geometric surface area of the working 
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electrode. The value of D for I , 1.56 x 10 ̂  cm̂ sec was determined 

experimentally with an BDE (118), and the value for v used was that 

noted previously, 0.01063 cm̂ sec The maximum stable value of 

for Electrode B was obtained at f = 240.0 Hz and Rê  = 100, as indicated 

in Figure V-2. The value of (U calculated from the above data was app 

2.61 X 10̂  rad sec ̂  or 2.49 x 10̂  revolutions per minute (RPM). 

An analogous experiment employing 0.200 mM CrgOy in 0.5 M Ĥ SÔ  

was performed with Electrode E. The value used for D, 1.07x10 cm sec 

was that given for CrÔ " by Kolthoff and Lingane (119). The observed 

value of Iĵ  was 125.4 pA at f = 240.0 Hz and Rê  = 130, and the cor-

3 responding value calculated for (u of this Au electrode was 1.94 x 10 
app 

-1 4 rad sec or 1.85 x 10 RPM. The value is somewhat lower than that 

for I at the Pt electrode due to the decay of for the reduction 

of Cr(VI) to Cr(III) at a Au electrode. 

The data from these 2 experiments indicate that the maximum value 

for the mass transport to a vibrating electrode is approximately equal 

to that which would be observed at an RDE rotating at 20,000 RPM, 

assuming that laminar flow prevailed at the RDE at that speed of rota

tion. As a result, the sensitivity of the vibrating electrode may be 

expected to be at least 1.5 times greater than the maximum sensitivity 

observed for RDEs, which normally find application at speeds of rota

tion less than 10,000 RPM. It must be emphasized that cu is a purely app 

fictitious parameter and is useful only for purposes of comparison of 

vibrating electrodes with RDEs. 
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C. Studies at Constant Rê  

The rate of mass transport to any electrode can be characterized 

on the basis of the Sherwood number, Sh, which was defined in Equations 

II-3 and II-4. The Sherwood number, and thus the mass transport, is a 

function of the vibrational Reynolds number, Rê , and the Schmidt 

number, Sc (112, 120). The Schmidt number is defined as the ratio of 

the kinematic viscosity of the solution to the diffusion coefficient 

of the electroactive species (120) and is, thus, independent of the 

vibrational parameters. Therefore, the relationship between the mass 

transport to a vibrating electrode and its vibrational parameters is 

theoretically characterized solely by Rê , which was defined in Equa

tions II-2 and III-7. 

Inspection of Equation III-7 reveals that the vibrational ampli

tude and frequency may be varied without altering the value of Rê , 

provided that the product of the amplitude and frequency remains 

constant. From the discussion presented In the preceding paragraph, 

the value of Î  at a vibrating electrode should remain constant under 

such conditions. The results of 2 experiments designed to verify this 

prediction are presented in Tables V-2 and V-3. Both experiments were 

performed with Electrode D. For the data presented in Table V-2, v̂ ^̂  

was held constant at 30.0 cm sec corresponding to Rê  = 53.8, over 

a frequency range of 40 to 480 Hz. This value of Rê  was chosen to 

permit the widest possible range of frequencies to be studied; it also 

was representative of the values for Rê  employed in much of the ana

lytical work. The results indicate that Î  remains constant within 
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Table V-2. 1\ as a function of app and f at Vavg = 30.0 cm sec 
Re = 53.8* 

V 

f (Hz) â p (mm) 1̂  (n&) 

40.0 3.75 73.4 

60.0 2.497 76.2 

90.0 1.664 80.2 

120.0 1.249 86.3 

150.0 0.999 92.0 

180.0 0.836 91.3 

240.0 0.624 92.9 

360.0 0.415 91.5 

480.0 0.312 72,6 

Êlectrode A; 1.018 mM I in 0.5 M HgSÔ ; = + 0.800 V vs. SCE. 
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Table V-3. Ii as a function of â p and f at  ̂15.0 cm sec 
Re = 26.9* 

V 

f (Hz) a (mm) I. (pA) 
PP  ̂

30.0 2.497 54.3 

40.0 1.873 55.7 

60.0 1.249 59.8 

90.0 0.836 63.1 

120.0 0.624 61.8 

150.0 0.499 58.2 

180.0 0.415 53.9 

240.0 0.312 46.3 

360.0 0.209 27.0 

480.0 0.166 18.1 

Êlectrode A; 1.018 mM l' in 0.5 M = + 0.800 V vs. SCE. 
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+ 3% from 100 Hz to 400 Hz and within + 10% over the range of frequencies 

covered by the experiment. Table V-3 presents data from a similar experi

ment, which was performed at v̂ ^̂  = 15.0 cm sec corresponding to 

Re =26.9. In this case I, remained constant within + 5% from 30 Hz 
v 1 — 

to 180 Hz, and a distinct rolloff was noted at higher frequencies. The 

value of measured at 480 Hz in this experiment was only 15% of that 

found at 150 Hz. 

The results of these 2 experiments indicate that the value of Rê  

based on the diameter of the working electrode is an adequate charac

terization of the mass transport from 100 Hz to 400 Hz at values of Rê  

used in the analytical work. At lower Rê  values, other factors ap

parently reduce the mass transport to the electrode at vibrational 

frequencies above approximately 180 Hz. In view of these results, 

a frequency of 240 Hz was chosen for most of the analytical determina

tions performed with vibrating electrodes. The failure of the correla

tion between Rê  based on the diameter of the working electrode and 

the rates of mass transport at lower values of Rê  is possibly due to 

influences of the glass sheath of the microelectrode on the flow pat

terns induced by the working electrode. 

D, Hydrodynamic Frequency Response 

As was noted in Chapter II of this dissertation, Podesta, et al. 

(36) observed an AC component to the limiting current at a vibrating 

disc electrode. The results of an analogous experiment designed to 

ascertain the AC frequency response of the boundary layer at a vibrating 
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wire electrode by electrochemical means are presented in Figure V-1. 

The data in Figure V-1 were obtained by measuring the relative ampli

tudes of the AC and DC components present at the current output of the 

potentiostat as a function of the frequency of vibration of the elec

trode. These measurements were performed with the Model 461 digital 

voltmeter, vAiich was connected to the current output of the potentiostat. 

The meter was AC coupled on the AC voltage ranges and therefore did 

not respond to the DC component of in the AC measurement. The rela

tive value of the AC component was obtained by dividing the measured 

2f value for the AC component, designated by , by the measured value 

for the DC component, designated by 1̂ . This ratio was multiplied 

2f 
by 2.828 to change the RMS value of to the peak-to-peak value, 

2f 
AI. , and then by 100 to yield a percentage, the logarithm of which 

 ̂> PP 
2f 2f 

is plotted in Figure V-1. The superscript 2f in and de

notes that the AC component being measured has a frequency which is 

twice that of the frequency of vibration. This 2:1 relationship 

arises from the symmetrical nature of the vibration and the resultant 

equivalence of the flow patterns Induced by motion of the electrode in 

either direction. 

During the experiment, the vertical and horizontal inputs of the 

oscilloscope were connected, respectively, to the current output of 

the potentiostat and to the signal used to drive the vibrating electrode. 

A 2:1 Lissajous figure was observed in this manner for all frequencies 

employed in this experiment, thus verifying the predicted 2:1 relatlon-

2f ship of the frequency of to the vibrational frequency. The phase 

2f 
shift of relative to the AC signal used to drive the speaker in-
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Figure V-1. Bode plot of frequency response of vibrating electrode 

Rê  = 26.9; v „ = 15.0 cm sec"̂ ; Electrode D; 1.018 mM l" inO.5 M H-SO, : = 
+ 0.800 V vs. SCE. 2 4̂  
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creased with increasing frequency. This phase shift was a combined 

result of the phase shift produced by the speaker and vibrator as

sembly and that arising from the response of the boundary layer. 

The experiment was performed with Electrode D in a 1.018 mM solu

tion of l" in 0.5 M HgSÔ  which was deaerated with to minimize oxida

tion of the I" by atmospheric oxygen. The electrode was maintained 

at a potential of 0.0 V vs. SCE except during the measurements of the 

2f values of and which were simultaneously performed at + 0.800 V 

vs. SCE. All data were obtained at v̂ ^̂  = 15.0 cm sec corresponding 

to Rê  = 26.9. The range of frequencies studied was 20 Hz to 330 Hz. 

The data obtained in the above experiment are plotted in Figure 

V-1 in a log-log format. The graph of the frequency response is 

analogous to a Bode plot, which is employed extensively to display the 

frequency characteristics of electronic circuits (pp. 71-2 of 93). 

The response of the boundary layer is seen to approximate that of a 

low-pass filter, which is characterized by a limiting slope of - 20 

dB/decade at high frequencies for a first-order filter and - 40 dB/decade 

for a second-order filter. These slopes are shown in Figure V-1 for 

reference. The attenuation in excess of - 20 dB/decade noted at higher 

frequencies is possibly due to the frequency response of the potentio-

stat combined with that of the boundary layer. Taking - 20 dB/decade 

as the limiting slope for the Bode plot, a cutoff frequency of ap

proximately 63 Hz is obtained for the vibrating electrode. 

The frequency response of electrochemical mass transfer probes 

in turbulent flow has been studied by Fortuna and Hanratty (121) and 

by Hanratty and Chorn (122). These studies were directed toward ap
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plication of small, rectangular electrodes to the characterization of 

the turbulent flow occurring in tubes and pipes. The electrodes were 

situated flush with the wall of the pipe, with the long dimension 

parallel to the direction of flow. In particular, the frequency 

response of the electrodes to rapid changes in the velocity of flow 

in the vicinity of the electrode was sought. Hanratty and Chorn stated 

a criterion, couched in dimensionless variables, for the calculation 

of the frequency at which the response of the boundary layer causes 

significant attenuation of the signal. When combined with the defini

tions of these dimensionless variables (121), this criterion is sum

marized by Equation V-3: 

2nfL"̂ ^̂ u*"̂ Sĉ ''̂  = 1 (V-3) 

In Equation V-3, L represents the ; racteristic length of the electrode 

and u* represents the friction velocity, which is an averaged velocity 

employed in analyses of turbulent flow. Using d̂  for Electrode D and 

63 Hz for f, a value for u* of 20 cm sec ̂  is obtained. The values 

substituted for d̂ , v, and Sc are taken from data cited previously. 

The calculated value of u* is surprisingly close to the value of v , 

-1  
15.0 cm sec , which was chosen for the experiment described in this 

section. It must be noted that the relationship given in Equation V-3 

was not derived for cylindrical electrodes. According to Hanratty and 

Chorn: "The analyses carried out by Fortuna for wall probes should be 

extended so as to include cylindrical elements immersed in a fluid..." 

Also, u* and v are not Identical. 
avg 

The dominance of the second harmonic in the AC component to Î , 
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which was observed In the above experiment, contrasts significantly 

with the dominance of the fundamental frequency noted by Podesta, 

et al. (36). This difference arises from the contrasting natures of 

the 2 types of vibrating electrodes. In the present work, the vibrating 

electrode is a cylinder and is vibrated symmetrically from side-to-slde. 

Movement in either direction has an identical effect on the hydro-

dynamic flow patterns (except for direction) Induced by the electrode 

and on the limiting current. In the system employed by Podesta, et al., 

a disc electrode was surrounded by a cone, and the hydrodynamlc flow 

patterns differed for the half-cycle corresponding to Impingement and 

that corresponding to withdrawal of the conical assembly in the solution. 

Thus, a dominant component was noted at the fundamental frequency. A 

significant contribution from the second harmonic was visible in the 

oscillogram presented In the article, although this was not noted by 

the authors. 

2f 
The small amplitude of 61̂  noted in these experiments precludes 

its application to analytical determinations in a manner analogous to 

HMVE(AM) and HMVE(FM), which employ the 10-Hz AC component of Î , 

as the analytical observable. 

E. Relationship of Î  and to Rê  

The experimental plots of Î  as a function of Rê  were automatically 

recorded using the AM/FM generator, potentiostat, and audio amplifier 

described in Chapter IV. The X-Y recorder enq>loyed in this and all 

succeeding experiments was an Omnigraphic model 2000, manufactured by 
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the Houston Instrument Co., Bellalre, TX. In the experiments detailed 

in this section, the X-Y recorder was connected as described in Section F 

of Chapter IV. The potential applied to the AM Ramp jack in the AM/FM 

generator was derived from a ramp generator of standard design, tdiich 

produced an initial potential of 0.000 V and a final potential of 

7.000 V with provision for reversal of the direction of scan at the 

limits. The scan rate employed was 1.9 V min 

In order to calibrate the X (Rê ) axes of the experimental plots, 

it was necessary to characterize the overall function relating the 

value of Rê  to the potential of the DC ramp. This function is a 

composite of 3 independent relationships: the dependence of Rê  on 

the value of a , the dependence of a on E. applied to the speaker, 
pp pp in 

and the dependence of on the voltage of the DC ramp. These 3 re

lationships are all direct proportionalities, as shown by Equation 

III-7, Figure III-2, and the quoted characteristics of the 4-quadrant 

multiplier (108), respectively. Therefore, Rê  is directly proportional 

to the value of the DC ramp, and the proportionality constant for this 

overall composite function is given by the product of the propor

tionality constants for each of the 3 relationships mentioned above. 

For the present research, the first of these constants was obtained 

by substitution of the experimental values for f, d̂ , and v into 

Equation III-7. The second constant was obtained from the slope of 

the applicable calibration curve for the corresponding electrode and 

frequency, examples of which have been shown in Figure III-2. The 

numerical values for the slopes were obtained from the observed data 

using the least-squares program supplied with the SR-51A calculator. 
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manufactured by Texas Instruments, Inc., Dallas, TX. 

Prior to determining the proportionality constant relating to 

the voltage of the DC ramp, the setting of P12 in the AM/FM generator 

was adjusted such that the vibrational amplitude obtained for a ramp 

voltage of 7.0 V was approximately 10% larger than that corresponding 

to the onset of unsteady values of Î  at the vibrating electrode. 

Following this, the value of corresponding to a ramp voltage of 5 

to 7 V DC was measured; the potential of the ramp generator was held 

constant during the measurement. Both Ê  ̂and the potential of the DC 

ramp were measured to an accuracy of + 0.001 V. Following this measure

ment, the plot of vs. Rê  was recorded, starting at a ramp potential 

of 0.000 V. Normally the value of Î  was recorded for a complete cycle 

of the ramp generator, thus permitting investigation of flow transitions 

for increasing and decreasing values of Rê . 

In addition to the plots of Î  vs. Rê  described above, the 

principle of HMVE(AM) was applied to the study of hydrodynamic flow 

patterns at vibrating electrodes. In these experiments, a O.l-V̂ p, 

10-Hz signal was superimposed on the DC ramp used for the Î  graphs. 

This produced a sinusoidal, 10-Hz perturbation of the otherwise 

linearly increasing value of Rê . The percentage of modulation for a 

0.1-Vpp input from the 10-Hz oscillator was 1.0% at a ramp potential 

of 5.0 V. The 10-Hz perturbation in Rê  induced a 10-Hz AC component 

in Î , designated as AÎ , which was processed by the LIA. The DC 

output of the LIA was recorded as a function of Rê  in a manner analogous 

to that employed in the plots of Iĵ  vs. Rê . The corresponding plots 

of Iĵ  and AÎ  were generally recorded on the same sheet of graph paper 
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during successive scans of the ramp generator. Simultaneous recording 

of both components would be possible on a 2-pen recorder. The degree 

of perturbation expressed In terms of Rê  was obtained by multiplica

tion of the level of the 10-Hz Input signal, 0.1 by the propor

tionality constant relating the ramp potential to the value of Rê . 

A typical example of a combined plot displaying both and 61̂  

as a function of Rê  is Illustrated in Figure V-2, The value of 

represents the component of the 10-Hz signal \diich is in phase with the 

hydrodynamic modulation of the vibrating electrode. The experiment was 

performed with Electrode A at a vibrational frequency of 240 Hz. 

and were measured for the oxidation of 1.018 mM I In 0.5 M Ĥ SÔ  

at a potential of + 0.800 V vs. SCE. The solution was deaerated with 

Ng prior to performing the experiment and was blanketed with during 

the scans of Rê . The potential of the electrode was maintained at 

0.0 V vs. SCE except during the actual scan. These precautions 

minimized unwanted oxidation of l" to Analogous experiments were 

also performed with Electrode A at 40, 80, and 120 Hz; with Electrode B 

at 120 Hz; and with Electrodes B and E at 240 Hz. and AÎ  for 

Electrode E were measured for the reduction of 200 |JiM CrgÔ  in 1.0 M 

HgSÔ . In addition, tests were conducted with axial and transverse 

vibration of Electrode C, vAilch was held by a stiff Cu wire attached 

to the cone of the speaker; the transverse studies were performed with 

the exposed Ft wire bent 90 deg at the glass-to-metal seal. 

The experiments with Electrode C showed that the value of 

observed for axial vibration, I.e., parallel to the axis of the wire, 

was 1/4 to 1/2 that observed for transverse or angular transverse 
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Figure V-2. Experimental plot of and vs. Rê  for Electrode A at 240 Hz 

A, B, C, D, E, F — key points referred to in text and Table V-5; G — point used in 
calculation of u) for Electrode A. app 

Scan rate of Rê  = 34.1 min"l; f = 240.0 Hz; Electrode A; 1.018 mM I' in 0.5 M H.SO, ; 
Ê  = + 0.800 V vs. SCE. 2 4 
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vibration (both perpendicular to the axis of the wire) of the same 

electrode at corresponding vibrational parameters. The plots of 

vs. Rê  for normal (linear) transverse and angular transverse vibra

tion were similar in appearance, and both differed from the "smoother" 

appearance of the axial plot. Whereas the plots of vs. Rê  for 

transverse vibration were distinctly nonlinear and showed some evidence 

of fine structure, the analogous plots for axial vibration were much 

closer to a direct linear relationship between and Rê . 

The general appearance of all plots of 1̂  ̂vs. Rê  was similar to 

that seen in Figure V-2. A smooth increase in at low Rê  values was 

interrupted at approximately Rê  = 13 to 19 by the appearance of a 

distinct "bump" in the curve. In many cases, including the graph shown 

in Figure V-2, a short region was even noted in which an increase in 

the amplitude of vibration produced a decrease in the limiting current. 

This behavior was noted only in the ramp direction corresponding to 

increasing values of Rê . After this region was passed, the current 

again monotonically increased until the onset of noise occurred, 

typically at Rê  = 85 to 115, above which the value of became 

unstable. In most cases a broad "bump" was noted at Rê  values ap

proximately halfway from the start of the plot to the onset of noise. 

Studies were not conducted at vibrational amplitudes far beyond the 

onset of noise, because the vibrational parameters approached the maxi

mum values possible with the speaker chosen, and the high noise level 

precluded application to electroanalytical determinations. The high 

acoustical noise level produced at large vibrational amplitudes, 

particularly at frequencies above 120 Hz, also proved objectionable to 
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the experimenter and to co-workers in the laboratory (123). It should 

be noted, however, that continued to increase, albeit rather slowly, 

with increasing amplitudes of vibration beyond that corresponding to 

the onset of noise. The only feasible analytical application of 

vibrating electrodes operated in this region would be in anodic stripping 

voltamnetry during the deposition process, in which the long period of 

deposition would average out the comparatively high-frequency components 

of the noise. Use of the vibrating electrode at Rê  values below the 

onset of noise generally ensures that a stable analytical signal is 

obtained. The only exceptions to this rule were found with Electrode A 

at frequencies of 80 and 120 Hz and intermediate values of Rê , in the 

region of the broad "bump," Rê  = 50 to 70. At times, the value of 

under these conditions would alternate between 2 stable values, which 

differed by about 5%. It is likely that an unstable transition between 

2 flow patterns at a portion of the electrode caused this behavior. 

In Figure V-2, Î  increases in a distinctly nonlinear fashion with 

increasing values of Rê . Further characterization of the relation

ship between and Rê  necessitates the presentation of the data for 

Iĵ  from Figure V-2 in a log-log format. Such a graph is presented in 

Figure V-3 for data taken from Figure V-2. Values of Iĵ  and Rê  were 

taken directly from the Î -Rê  plot in Figure V-2 at 0.25-V increments 

in the value of the ramp potential. The values of were uniformly 

read from the scan in the direction of decreasing Rê . The slope of 

this plot, which represents the average exponential dependence of Î  

on Rê , was obtained from the original data by means of the least-

squares routine on the SR-51Â calculator. The experimental points on 
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Figure V-3. Log vs. log Rê  for Electrode A at 240 Hz 

Data from Figure V-2. 
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the log-log plot do not lie on the calculated line, but oscillate about 

it. This behavior was characteristic of all plots of log vs. log 

Rê  for vibrating electrodes and was observed with both Pt and Au 

electrodes with the electrochemical reactions of I' and CrgOy , 

respectively. It was concluded that the "bumps" in the experimental 

data result from the hydrodynamic flow patterns induced by the elec

trode and are not a result of the electrochemical reaction. 

The results of analogous experiments conducted at different fre

quencies and with different electrodes are summarized in Table V-4. 

The slopes given in Table V-4 represent the exponential dependence 

of I, on both Re and a , because a was the experimental variable 
1 V pp' pp 

in these experiments. The observed values for the exponential de

pendence of on Rê  lie between 0,5 and 0.7, with the exception of 

one result obtained for Electrode B. The reason for the larger value 

observed for Electrode B is unknown. All values found experimentally 

lie within the range of 0.42 to 1.0, which has been reported in the 

literature (see Table II-l). 

Although not employed in this research, direct recording of log 

vs. log Rê  is theoretically possible with the addition of 2 loga

rithmic converters to the present experimental apparatus. For this 

experiment, the DC ramp and the current output of the potentiostat 

would each be connected to the input of a logarithmic converter, 

and the corresponding outputs of the converters would be connected 

to the X and Y axes of the X-Y recorder, respectively. The slope of 

the graph obtained on the X-Y recorder, when connected for the scaling 

factors of the converters, would represent the exponential dependence 
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Table V-4. Exponential dependence of on Rê  and app for different 
electrodes and frequencies 

Electrode f (Hz) Slope Rê  range covered 

A* 40 0.519 4-80 

A* 80 0,636 5-85 

A* 120 0.614 5-110 

A* 240 0.712 5-128 

240 0.962 8-117 

Ê  240 0.679 9-145 

*1.018 mM l" in 0.5 M Ĥ SÔ ; = + 0.800 V vs. SCE. 

2̂00 |iM Cr̂ Ô " in 1.0 M Ĥ SÔ ; Ê  = + 0.300 V vs. S CE. 
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of I. on Re and a . This procedure would permit more detailed in-
1 V pp 

vestigation of the exponential dependence. 

The exponential dependence of on the vibrational frequency, f, 

was also calculated from the data obtained in the experiments with 

Electrode A. Since direct recording of vs. f at constant â  ̂was 

not possible, the value of I, at a chosen amplitude of 0.685 mm was I pp 

calculated from the 4 plots of vs. Rê . The corresponding values of 

Rê  ranged from 15 at f = 40 Hz to 90 at f = 240 Hz. The data are pre

sented graphically in a log-log format in Figure V-4. The slope of this 

graph, 0.664, represents the exponential dependence of on f for 

Electrode A. This value lies within the range of 0.57 to 1.09, which 

has been reported in the literature (see Table II-l). 

As stated previously, the mass transport to a vibrating electrode 

is characterized solely by Rê  for a given solution and electroactive 

species. The relationship between the rate of mass transport and Rê  

may be expressed in exponential form (112, 117, 120), as shown in 

Equation V-4. 

Sĥ  = kRê  (V-4) 

In Equation V-4, the rate of mass transport is defined by the vibrational 

Sherwood number, Sĥ , and k is a proportionality constant. The exponen

tial dependence of Sĥ  on Rê  is represented in Equation V-4 by z. 

This relationship may be extended to by combining Equations V-4 

and II-3: 

I, = k'Re= 
1 V 

(V-5) 
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Figure V-4. Log vs. log f for Electrode A at = 0.685 mm 

1.018 inM l" in0.5M Ĥ SÔ ; = + 0.800 V vs. SCE. 
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In Equation V-5, k' represents a proportionality constant composed of 

constants from Equations V-4 and II-3. The theoretical relationship 

between and the vibrational amplitude and frequency Is now readily 

obtained by combination of Equations V-5 and III-7, which yields 

Equation V-6. The constant k" represents the overall proportionality 

constant. 

= k"aZfZ (V-6) 

Taking the logarithm of both sides of Equation V-6 yields Equation V-7: 

log = log k" + z log a + z log f (V-7) 

From Equation V-7, it is evident that graphs of log vs. log a at 

constant f and of log vs. log f at constant a should theoretically 

have identical slopes, represented by z, the exponential dependence 

of on a or f. 

The values for the exponential dependence of on a and f as 

experimentally determined were 0.620 and 0.664, respectively. The 

former value is the mean of the 4 values for Electrode A given in 

Table V-4, and the latter value is the slope of the graph in Figure 

V-4. These values are in close agreement and provide support to the 

theory developed in the preceding paragraph. 

The experimental plots of vs. Rê  provided interesting in

sights into the nature of the flow transitions occurring at vibrating 

electrodes. In all cases, the graph of AÎ  presented a 3-bumped ap

pearance, as seen In Figure V-2. The second or middle bump was always 

largest and was usually quite narrow. In most cases the first bump. 



www.manaraa.com

140 

observed at low Rê  values, was better developed than in Figure V-2; 

in certain cases it was as much as half the height of the second bump. 

The third bump was always the broadest and ended with the transition 

to noisy, unstable values of AÎ , which occurred at Rê  = 85 to Rê  = 115. 

The end of the first bump coincided with the dip in the graph of 

where present, and the onset of noise occurred at similar points in the 

graphs of and The noise at high values of Rê  was much larger 

in the graph. This is a natural result of the nature of AÎ , which 

is produced by small variations in the thickness of the diffusion layer. 

Whereas depends on the overall value of 6, the value of depends 

on the value of these small variations. 

In certain cases a sharp transition in the value of AÎ  was noted 

near the end of the third bump. This transition is noted by point F 

in Figure V-2 and is likely related to the bistable transition in 

noted previously. 

The plot of AÎ  vs. Rê  for Electrode C vibrated in the axial 

mode was found to differ significantly from the 3-bumped graphs ob

served in the angular transverse mode of vibration. In the axial case, 

the value of AIĵ  roughly paralleled the increasing value of Iĵ  with 

the exception of a rather abrupt dip at Rê  = 20. The contrasting 

natures of the graphs of AÎ  vs. Rê  for axial and transverse vibra

tion show that the hydrodynamic flow patterns induced by the electrode 

are fundamentally different for the 2 modes. 

Several points were chosen as characteristic of the 3-bumped 

graphs of AÎ  vs. Rê . These key points are depicted in Figure V-2, 

and the Rê  values corresponding to the positions of analogous points 
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In other scans are noted in Table V-5. In each graph, point A repre

sents the peak of the first bump, B the dip between the first and 

second bumps, C the peak of the second bump, D the minimum between 

the second and third bumps, and E the transition to noise. Point F, 

where shown, represents the Rê  value corresponding to the sharp 

transition in 61 in the third bump. The values are not totally 

independent of frequency, and the lower values observed for Electrode D 

likely reflect the smaller diameter of that electrode. However, the 

variations in the locations of these points are far smaller than the 

corresponding variations in the vibrational frequency. From compari

son, of these Rê  values with values given in the literature for the 

observed hydrodynamic transitions occurring at cylinders, it is likely 

that point B corresponds to the establishment of fixed vortices in the 

region of the electrode. Points E and F likely correspond to the 

transition between 2 flow regimes noted by Blevins (115) at Re =90. 

The significance of the other points is not readily interpreted. Since 

all features of the 3-bumped graphs were observed with both Pt and Au 

electrodes for the electrochemical reactions of I , CrgOy , and 0̂ , 

it was concluded that the features are characteristic of the hydro-

dynamic behavior of the electrodes. 

The degree of fine structure observed in the scans of vs. Rê  

was found to be inversely related to the level of the 10-Hz signal 

superimposed on the DC ramp. This property is analogous to similar 

behavior observed in AC polarography and in modulated-wavelength 

spectroscopy, and it is characteristic of all modulated instrumental 

techniques. The level of modulation of the DC ramp chosen provided 
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Table V-5. Characterization of plots of vs. Rê  by key points 

f R®v values of key points* 

Electrode (Hz) A B C D E F 

A 40 18 20 23 28 73 — 

A 80 18 21 26 32 81 — 

A 120 20 23 29 36 85 65 

A 240 23 26 31 50 108 92 

B 240 21 25 46 69 113 90 

D 120 13 16 20 23 56 — 

E 240 26 31 36 67 137 97 

*See text and Figure V-2 for designation of points A through F. 
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a good tradeoff between the resolution of observed fine structure and 

the noise figure of AEĵ . 

F, Phase of AI, as a Function of Re 
1 V 

To ascertain the phase of it was necessary to record 2 scans 

of vs. Rê . In the first of these, the LIA was set to measure the 

component of.61̂  In phase with the hydrodynamlc modulation of the 

vibrating electrode, in the manner employed previously. In the second 

scan, the LIA was set to measure the component of AÎ  in quadrature 

with the hydrodynamlc modulation (i.e., 90 deg out of phase from the 

modulating signal). This was effected by changing the setting of the 

Quadrant switch on the LIA from the 0 deg position to the 90 deg posi

tion. The 2 scans were recorded directly on the X-Y recorder in the 

normal manner. 

The requirement for the second scan of AÎ , recorded in quadra

ture with the hydrodynamlc modulation, may be understood by considering 

the response of the LIA to phase shifts in the Input signal. The 

response of the LIA to sinusoidal input signals which are shifted from 

the reference waveform by a phase angle 0 was derived in Chapter IV 

of this dissertation and is given by Equation IV-6. This equation 

was derived under the assumption that the phase of the signal led 

that of the reference. However, an equivalent lag in the signal wave

form, which corresponds to a phase lead of - 0 deg, produces the same 

value of ê (0). This is a result of the fundamental trigonometric 

identity that cos 0= côs(- 0). To ascertain whether the signal 
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waveform leads or lags the reference waveform, it is necessary to per

form the second measurement of the component of the signal which is in 

quadrature with the reference waveform. 

The response of the LIA to a signal measured in quadrature with 

the reference waveform may be elucidated by analysis of the phase 

relationships existing between the signal and reference waveforms in 

the LIA. For the purpose of this analysis, the signal waveform, ê Ct), 

is considered to lag the reference waveform at the reference input by 

a phase angle of 0. The equation of the signal waveform is thus 

given by Equation V-8: 

As has been described in Chapter IV of this dissertation, the processing 

circuitry for the reference waveform introduces a phase lag of 90 deg 

with the Quadrant switch set to the 90 deg position. This introduced 

phase lag of 90 deg between the reference input and the 4-quadrant 

multiplier is equivalent to an added phase lag of - 90 deg in the signal 

waveform. The overall lag in the signal waveform relative to the 

reference waveform (at the reference input) is thus = 0 - 90. 

The apparent phase lag "sensed" by the 4-quadrant multiplier is 0̂ ^̂ , 

and the quadrature output signal of the LIA, designated as ep(0), 

is given by Equation V-9. 

BgCt) = EgSin (u)t - 0) (V-8) 

ep(0)/e o,max 
= cos 0, 

tot (V-9) 

The value of e 
o.max in Equation V-9 is given by Equation IV-2. Since 
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9  = 9 - 9 0  a n d  c o s  ( 8  -  9 0 )  =  s i n  0 ,  t h e  q u a d r a t u r e  r e s p o n s e  o f  t h e  
tot 

LIA Is given by Equation V-10: 

The output of the LIA for in-phase measurement of the signal de

fined in Equation V-8 is given by Equation V-11. The DC output from 

the LIA in this case is designated as ê (9) to distinguish it from the 

DC output obtained from the quadrature measurement. 

=l(®)/=o,max = ® (V-11) 

The phase lag of the signal waveform may be ascertained from the values 

obtained from the in-phase and quadrature measurements of ê Ct) with

out the need for measurement of ê  max* this case, 0 is given by 

Equation V-12, which results from division of Equation V-10 by Equa

tion V-11. 

eQ(0)/ej(9) = tan 0 (V-12) 

An equivalent form is presented in Equation V-13: 

0 = tan'l[eQ(0)/ej.(0)] (V-13) 

The quadrant of 0 is defined by the signs of 6̂ (0) and 6̂ (9). 

As a verification of the above equations, the phase lag introduced 

by the MSR rotator was determined by measurement of 6̂ (9) and eq(8). 

This measurement yielded a result of 26.9 deg, which agreed, within 

experimental error, with the value obtained by the alternate method 

described in Chapter IV. The accuracy of the phase shifts calculated 
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by Equation V-13 was on the order of + 1 deg. 

The phase of as a function of Rê  for Electrode D is shown 

in Figure V-5. The taw data for this graph were obtained from 2 suc

cessive scans of 61̂  vs. Rê  which were performed with the LIA set 

to measure the in-phase and quadrature components of respectively. 

The graphs of were obtained for 1.0 mM l" in 0.5 M Ĥ SÔ . Values 

of were measured at 0.1-V increments of the DC ramp, and cor

responding values from the 2 scans were substituted into Equation V-13 

to calculate the phase shift, 9. The 10-Hz signal superimposed on the 

DC ramp had an amplitude of 0.1 V̂ .̂ 

At most of the values of Rê  in the regions of the first and third 

bumps of the plot of AÎ  vs. Rê » the phase shift observed is a lag of 

20 to 100 deg. These values lie within the range predicted by Fortuna 

and Hanratty (121) and by Tokuda, et al. (124) for the phase shifts 

resulting from the phase response of the diffusion layer to sinusoidal 

perturbations. The phase shifts calculated at Rê  values from 22 to 

24 are less accurate due to the low values of eQ(6) and ej.(6) produced 

by the LIA. However, the large change in the phase shift observed in 

the region of the second bump is not an instrumental artifact and re

sults from a significant change in the phase response of the diffusion 

layer at the corresponding values of Rê , 

Phase shifts from 20 to 26 deg (lag) were observed for Electrodes 

A and D for AÎ  measured in the same manner using HMVE(AM) at large 

percentages of modulation, from 33% to 95%. The electrochemical 

system studied in these experiments was also 1.0 mM l" in 0.5 N Ĥ SÔ . 

The phase shifts resulting from the response of the diffusion 
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Figure V-5. Phase pf vs. Rê  for Electrode D 

f = 120 Hz; = 1.06̂ ;̂ 1.018 mM I in 0.5 M Ĥ SÔ ; = + 0.800 V vs. SCE. 
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layer to sinusoidal perturbations are related to the relaxation time 

of the diffusion layer. Since this relaxation time is also related to 

the frequency response of the diffusion layer, the results of these 

phase studies complement the studies of frequency response presented 

in Section D of this chapter. A major difference in these 2 experi

ments results from the nature of the HMVE(AM) technique. In the study 

of frequency response, the perturbation in the diffusion layer resulted 

from the large variation in the instantaneous velocity of the electrode, 

described by Equation III-3. In the HMVE(AM) experiments, the 10-Hz 

modulation introduced a small 10-Hz perturbation in the average 

velocity, the effect of which was studied in the experiments described 

in this and the preceding section. Both sets of results should be 

able to be quantitatively described by an extension of the theory 

of Fortuna and Hanratty (121). The development of such a theory is 

beyond the scope of this dissertation and is not pursued further in 

this work. Quite possibly, the complex nature of the flow patterns 

induced by transverse vibrations of cylindrical bodies precludes 

development of such a theory. The primary purpose of the experiment 

described in this section was to demonstrate the application of the 

LIA to the experimental measurement of phase angles. 

G. Visual Evidence of Hydrodynamic Transitions 

A simple experiment was conducted with Electrode A at f = 240 Hz 

in an attempt to correlate the features noted in Figure V-2 and dis

cussed in the preceding sections with the actual flow patterns ob
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served at the vibrating electrode. The flow patterns were made visible 

by means of entrained bubbles generated at the vibrating electrode, 

which was immersed in 1.0 M Ĥ SÔ . A Pt wire in one of the sidearms of 

the cell served as the counter (positive) electrode, and power for the 

electrolysis was supplied by 2 flashlight cells hooked in series (3.0 V). 

The amplitude of applied to the speaker was manually varied, and 

observations of the nature, position, and movement of the bubbles were 

noted. These observations are presented here in order of increasing 

values of Rê  for the vibrating electrode. 

At Rê  = 0, the bubbles were of comparatively large diameter and 

rose more or less straight up within 1 electrode diameter from the 

edge of the electrode. As the value of Rê  was slowly increased, by 

increasing the value of â  ̂at constant f, the width of the region 

traversed by the bubbles at first decreased and reached a minimum of 

1.5dg at Rê  = 11. Above this point, the bubbles began to move slightly 

outward from the electrode; this change in the behavior of the bubbles 

became noticeable at Rê  = 15 to 20. The first significant movement 

of the bubbles outward from the electrode was noted at Rê  = 23 to 29, 

at which point the bubbles moved as far as Ad̂  away from the electrode, 

following parabolic curves upward. Actual laminar streaming commenced 

in the region from Rê  = 29 to 51. At Rê  = 51, the first horizontal 

streaming of bubbles away from the electrode was noted; at this point 

the bubbles moved horizontally outwards for 5 electrode diameters and 

then began to drift upward, following a parabolic curve. The diameter 

of the streaming bubbles was noticeably smaller than that of the bub

bles produced at lower Rê  values. From Rê  = 51 to 78, the horizontal. 
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laminar streaming Intensified, and the diameter of the bubbles became 

somewhat smaller. Slightly below Rê  = 78, the velocity of the 

laminar, horizontal stream of bubbles became sufficiently great that 

the stream of bubbles reached the sides of the cell before moving up

wards. All streaming from the electrode at Rê  < 78 was confined to 

the plane of vibration of the electrode. At Rê  = 78, the first signs 

of turbulence in the stream of bubbles was noted. This turbulence oc

curred exclusively in the last third of the distance from the electrode 

to the wall of the cell and took the form of loops and swirls in the 

stream of bubbles. At Rê  =86, a distinct change in the nature of the 

motion of the bubbles was noted. The motion in the region of the 

electrode became more intense and turbulent, and the streaming became 

sufficiently intense that the evolved bubbles began to cloud up the 

solution in the upper third of the cell with bubbles. This effect 

was not noted below Rê  = 86. The flow pattern which commenced at 

Rê  = 86 became stronger at Rê  values up to 96. At Rê  = 96 to 98, 

the first streaming from the electrode at angles separated from the 

plane of vibration was noted. The diameter of the evolved bubbles was 

noticeably smaller, and the solution became sufficiently clouded to 

obscure the electrode within 20 sec. There was a definite change to 

greater turbulence at this point, although it was noted that this 

process could represent merely a continuation and strengthening of 

the flow pattern which commenced at Rê  = 86. Above Rê  = 98, all 

flow observed in the cell was turbulent. The intensity of flow continued 

to increase, but characterization of the flow pattern was impossible. 

At Rê  = 103, the upper half of the cell became sufficiently clouded to 
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obscure the electrode within 10 sec of application of power to the 

electrode. 

The above description of the observed flow patterns indicates 

that definite transitions occur within the range of Rê  values em

ployed in this research. From the results of the present experiment, 

it is concluded that the significant transitions in the flow patterns 

induced by the electrode occur for Electrode A at 240 Hz at Rê  =11, 

ça. 25, 78, ça. 90, and possibly at Rê  values around 103. It must 

be emphasized that these observations and conclusions relate to the 

hydrodynamic behavior observed at significant distances from the elec

trode. The relationship between this behavior and the thickness and/or 

character of the diffusion layer, the variable of primary electro

chemical interest, is unclear. However, the transition in the flow 

pattern observed at Rê  = 78 almost certainly has little or no effect 

on 6, because it was confined to large distances from the electrode. 

From comparisons of the present experimental results to the 

values of the key points observed in the graph of AÎ  vs. Rè̂  for the 

same electrode (see Figure V-2 and Table V-5), it appears that the 

second transition in the present experiment corresponds to point B 

and the fourth and fifth transitions correspond to points F and E, 

respectively. This interpretation lends credence to the interpretation 

of these key points as indicative of transitions in the hydrodynamic 

flow patterns Induced by the electrode, but it does not explain the 

3-bumped appearance of the graphs nor the significance of points A, 

C, and D, if any. The relationship of the hydrodynamic transitions 

observed at vibrating electrodes to the thickness and nature of the 
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diffusion layer constitutes a promising field for future research 

with vibrating electrodes. 

The onset of noise in both the and scans is directly re

lated to the extreme turbulence noted visually at corresponding values 

of Rê  in the present experiment. 

H. Conclusion 

The relationship between the limiting current observed at a vibrating 

electrode and the vibrational parameters has been quantitatively deter

mined for = 0 to 3.3 mm, f = 40 to 240 Hz, and Rê  = 0 to 150 at 

Pt and Au vibrating electrodes. The exponential dependences of on 

â p and f were found to be 0.620 and 0.664, respectively, for a given 

vibrating electrode. These values lend support to the theoretical 

prediction of equal values for these 2 exponential dependences. All 

values calculated for these dependences in this research are within 

the range previously reported in the literature, although significant 

differences were observed between different electrodes. The validity 

of Rê  as a characterization of the mass transport to vibrating 

electrodes has been tested at frequencies from 30 to 480 Hz and has 

been found to provide excellent correlations from 100 to 400 Hz at 

Rê  = 53.8 and good correlations at other values. The frequency and 

phase responses of vibrating electrodes have been evaluated, and the 

experimental results have agreed with general theoretical predictions 

in both cases. The maximum analytically useful rate of mass transport 

to vibrating electrodes has been experimentally determined, leading to 
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the prediction that the sensitivity of the vibrating electrode should 

be at least 1.5 times as sensitive as the RDE for analytical determina

tions. 

The possible application of hydrodynamic modulation to the charac

terization of mass transport to vibrating electrodes has been studied, 

and predictions based on these studies have been compared with actual 

observations of the flow patterns Induced by vibrating electrodes, 

with significant agreement noted between the 2 methods. 

Differences in both the electrochemical and hydrodynamic behavior 

of electrodes vibrated in the axial and transverse modes have been ob

served and evaluated, and the transverse mode has been found to possess 

significantly higher analytical sensitivity and more complex hydro-

dynamic behavior. 

Consideration of the angular dependence of the flux of electro-

active species to a cylindrical electrode reported by Radoi (112) 

indicates that the mass transport to a vibrating electrode is not 

uniform, and the vibrating electrode therefore does not possess the 

property of uniform accessibility characteristic of the RDE. Frcaa sum

mation of the results presented by Radoi for both directions of vibra

tion, the polar plot of the flux to a vibrating electrode should ap

pear somewhat like a 4-leaf clover, with the largest rates of mass 

transport noted at ça. 45 and 135 deg from the direction of vibration. 

À speculative characterization of the flow patterns Induced by 

vibrating electrodes may be formulated from a synthesis of the experi

mental results and observations from this research and from previous 

studies reported In the literature. The flow in the region of the 
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vibrating electrode is totally laminar at Rê  values below 10. From 

Rê  = 10 to ça. 25, a set of 4 fixed vortices is established, with a 

structure similar to that observed by West (109). These 4 vortices 

form the vibrational analog of the FSppl vortices reported in linear 

flow. Although not directly noted in this work, the presence of these 

vortices would explain the slight outward motion of the bubbles ob

served at these Rê  values. From Rê  = 25 to 50, these vortices begin 

to be shed in a manner analogous to that observed in linear flow. 

The turbulence in the stream of bubbles at Rê  = 78 is analogous to the 

establishment of the Karman vortex street. The major transition ob

served at Rê  = 86 possibly corresponds to the transition at Re = 90 

noted by Blevins (115). 

The original instrumental techniques described in this chapter 

were developed and evaluated for the characterization of the hydro-

dynamic behavior of vibrating electrodes, and they constitute a signifi

cant advance in the technology of vibrating electrodes. They enable 

far more detailed investigations to be undertaken than have been per

formed in earlier work, which relied exclusively on point-by-point, 

manual observations of Iĵ . These techniques are applicable to other 

types of vibrating electrodes, and their future use could well lead to 

more exact knowledge of the hydrodynamics of vibrating bodies. 
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VI. EVALUATION OF HYDRODYNAMIC MODULATION 

Analytical applications of hydrodynamlc modulation at RDEs and 

vibrating electrodes are presented in this chapter, and the merits of 

these techniques relative to DC voltammetry are evaluated. A comparison 

of HMVE(AM) and HMVE(FM) is also presented. 

A. Literature 

The concept of hydrodynamlc modulation at RDEs was introduced by 

Miller, et al. (125) and analytical application of the techniques was 

first demonstrated by Miller and Bruckenstein (97). In the latter 

study, voltammograms employing this technique were presented for the 

reduction of 5 x 10 ̂  M nitrobenzene and 4 x 10 ̂  M Tl"̂  at an amalgamated 

Au RDE and for the reaction of 1 x 10 ̂  M quinhydrone at a Pt RDE. 

The techniques were also applied to reactions at wax-impregnated 

graphite and Ag RDEs. Linear calibration curves of AÎ  at the RDE vs. 

concentration were presented. The relationships between the amplitude 

and phase of AÎ  and the hydrodynamlc parameters were predicted from 

theory for reversible reactions by Tokuda, et al. (124), and experi

mental results in agreement with the theoretical predictions were 

observed. In recent publications these and other authors have ex

tended these theoretical predictions and experimental observations 

to reactions having slower rates of electron transfer (126-129). 

Bruckenstein and Miller have summarized the areas of electro

chemical investigation which benefit from application of the tech

nique of hydrodynamlc modulation at RDEs (130). 
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Blaedel and Engstrom developed a closely related technique, In 

which the rotation speed of a glassy carbon RDE was switched between 

500 and 1500 RPM (131). A two-fold Increase In the difference between 

the limiting currents observed at these 2 rotation speeds was noted In 

the presence of 10 riM Fe(CN)g , relative to the blank value. 

A technique applicable to tubular electrodes which Is analogous 

In principle to hydrodynamlc modulation at RDEs was devised by Blaedel 

and Iverson (132). The difference between the values of observed 

at a tubular electrode for 2 different flow rates was evaluated as a 

function of the concentration of Fe(CN)g . A linear relationship 

was observed from 0.1 to 4.0 pM Fe(CN)̂  , with an estimated detection 

limit of 0.05 fJiM. Recent publications by Blaedel and Kim (133, 

134) have reported Improvements In Instrumentation for the technique, 

designated as pulsed flow voltammetry. The response of the AC component 

of observed In pulsed flow voltammetry at tubular electrodes was 

studied at frequencies of pulsation from 0.1 to 2.0 Hz (134). Further 

Improvements In the detection limit were not noted, however. Applica

tion of pulsed flow voltammetry to electrochemical detection In liquid 

chromatography was reported (135). 

B. Theory 

The basic principles of hydrodynamlc modulation and the Instru

mental methodology used to effect such modulation at vibrating elec

trodes have been presented In Chapters IV and V of this work. The 

major advantage of hydrodynamlc modulation is its ability to discriminate 
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against components of the total electrode current which are Independent 

of the rate of mass transport to the electrode, viz. currents resulting 

from nonfaradaic processes, e.g., charging current, and from surface-

controlled reactions, such as the oxidation and reduction of noble metal 

electrodes. Inasmuch as the majority of electrochemical reactions of 

analytical interest are mass-transport limited, the application of the 

technique of hydrodynamic modulation results in a significant increase 

in analytical sensitivity, as noted by Miller and Bruckenstein (97). 

In fundamental electrochemical investigations, the discrimination 

against surface-controlled processes afforded by hydrodynamic modula

tion permits rapid isolation of the components of the electrode current 

which are dependent on the rate of mass transport to the electrode. 

This information, which is of theoretical and mechanistic significance, 

cannot be obtained from a single DC voltanmogram by other means. 

The techniques of HMVE(AM) and HMVE(FM) have been introduced in 

Chapter IV of this work. From the predicted exponential dependences of 

Î  on a and f summarized in Equation V-6, it follows that corresponding 

perturbations of the vibrational amplitude or frequency should affect 

Î  in an equivalent manner. The choice between the 2 methods may thus 

be determined solely from instrumental considerations. 

C. Comparison of HMVE(AM), HMVE(FM), and DC Voltammetry 

Voltammograms of 4.19 MM Br in 1.0 M recorded using HMVE(AM), 

HMVE(FM), and DC voltammetry are presented in Figure VI-1. Similar 

percentages of modulation of v̂ ^̂  (and consequently, Rê ) were employed 
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Figure VI-1. DC, HMVE (AM), and HMVE (FM) voltanmograms of 4.19 pM Br in 1.0 M HgSÔ  at Electrode A 

A — DC voltanmogram; B — HMVE (AM) voltammogram; C — HMVE (FM) voltammogram. 

Scan rate = 2.0 V min DC: f = 350 Hz; Rê  = 76; â p = 0.397 mm; HMVE(AM): 
f = 350 Hz; average Rê  = 76; 17.6% modulation; HMVE(M): f = 350 + 60 Hz; average 
Rê  = 76; â  ̂= 0.397 mm; Quadrant = 180 deg. 

Details of DC voltammogram designated by "lOX" recorded at 10 times the current 
sensitivity of primary DC voltanmogram. 
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in the HMVE(AM) and HMVE(FM) voltammograms, permitting direct comparison 

of the 2 techniques. In the DC voltammogram, the wave corresponding 

to the oxidation of Br to Brg Is not readily resolved from the residual 

current, which results from the oxidation of the surface of the Pt 

electrode to PtO. The limiting current for the oxidation of Br", which 

is obtained at potentials greater than + 1.3 V vs. SCE, is totally 

obscured by the background currents produced by further oxidation of Pt 

to PtO and by the oxidation of Ĥ O to Ô . In the voltammograms of AÎ  

produced by the HMVE(AM) and HMVE(FM) techniques, these background 

currents are substantially reduced, and both the Br wave and the 

limiting current for the oxidation of Br are clearly visible. The 

peak observed in the value of at + 1.5 V vs. SCE results from 

ringing in the 10-Hz bandpass amplifier of the LIA induced by the re

versal of the direction of scan and is not indicative of electro

chemical processes occurring at this potential. The slight offset 

of 61̂  in the HMVE(AM) and HMVE(FM) voltammograms in the region from 

+ 0.5 to + 0.9 V vs. SCE is not an instrumental artifact, and the 

nonzero value Indicates that a significant, albeit miniseule, component 

of the residual current at the Pt electrode is mass-transport controlled. 

This background value in ÛIĵ  was noted in all experiments conducted 

at Pt RDEs and vibrating electrodes in which hydrodynamic modulation 

at high sensitivities was employed. The values of noted at 

potentials less than + 0.5 V vs. SCE result from the mass transport-

limited reduction of dissolved Og present in the solution, which was 

not deaerated. Because the Quadrant switch was set to the 180 deg 

position in this experiment, the directions of the HMVE(AM) and HMVE(FM) 
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waves are vertically inverted relative to the waves shown in the DC 

voltammogram (i.e., anodic values of are positive). 

The values of observed for the Br" wave relative to the back

ground level of and to the noise in indicates that the detection 

limit for Br" in this system, defined for a signal-to-noise (background) 

ratio of 2, is on the order of 4 x 10 ̂  M Br . This concentration 

lies well below the detection limit for Br using DC voltammetry, 

which is estimated from Figure VI-1 to be roughly 4 x lO"̂  M, the 

concentration employed in the experiment. Even at this concentration, 

the sloping baseline observed in the DC voltammogram complicates ac

curate determination of the limiting current. As previously noted, 

the DC limiting current, is totally obscured by background 

processes. 

The values of 61̂  in the HMVE(FM) voltammogram are approximately 

25% lower than corresponding values for in the HMVE(AM) volt

ammogram. In all other respects the 2 voltammograms are equivalent. 

From the theoretical predictions set forth in Chapter V, direct 

equivalence between the 2 methods is expected. The cause of the re

duced amplitude of the HMVE(FM) voltammogram is unknown but possibly 

originates from the same effect which caused the deviations in the 

values of at constant Rê , which were noted in the experiments 

described in Section C of Chapter V. 

Since the HMVE(AM) and HMVE(FM) voltammograms are equivalent, 

the detection limit is expected to be identical for both methods. 

The HMVE(FM) technique offers no advantage over HMVE(AM) at vibrating 

electrodes and suffers from considerably greater instrumental complexity. 
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Hence, the simpler HMVE(AM) technique was employed in all further 

experiments with hydrodynamic modulation described in this dissertation. 

The only factor favoring the use of HMVE(FM) is its constant vibra

tional amplitude, which could possibly prove advantageous in applica

tions requiring minimal cell volume (e.g., flow-injection analysis). 

The existence of finite background values of observed in the 

absence of electroactive species, has been noted. These small, mass-

transport controlled currents could possibly originate from the re

duction or oxidation of electroactive impurities in the supporting 

electrolyte or from dissolution of the Ft electrode. To investigate 

the former possibility, residual voltammograms were recorded both in 

0.01 M and 1.0 M Ĥ SÔ , using hydrodynamic modulation at a Pt RDE. 

The amplitude and character of the residual values of 61̂  did not 

change appreciably, showing that contamination of the HgSÔ  was not 

the cause of these currents. These and succeeding experiments were 

performed with triply distilled, deionized water (TDW), with the de-

ionization following the first distillation and the second distilla

tion being from alkaline permanganate (0.01 M KMnÔ  in 0.1 M KOH). 

The background currents were therefore ascribed to the dissolution of 

Ft with the concomitant, mass transport-dependent formation of a 

soluble species. This hypothesis has also been forwarded by Miller 

(136). Evidence for the dissolution of Ft electrodes subjected to 

positive potentials in 1.0 M Ĥ SÔ  has been cited (137) based on 

the results of experiments employing collection at rotating ring-disc 

electrodes and spectrophotometric determination of Pt(IV) in the HgSÔ  

following anodlzation. The same author also observed slight dif-
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ferences in the residual voltammograms obtained at a Pt RDE rotated at 

400 and 10,000 RPM. This dependence was independently observed in the 

present work and is probably directly analogous to the residual values 

of observed with hydrodynamic modulation. 

A second comparison of HMVE(AM) with DC voltammetry is presented 

in Figure VI-2. In this experiment, the mass transport-controlled 

reduction (138) of Cr(VI) to Cr(III) was studied at an iodized Pt 

vibrating electrode. The DC voltammogram displays no evidence of a 

reduction wave or limiting plateau for the reduction of Cr(VI), and 

the positive and negative scans are widely separated due to the large 

current associated with the charging of the double layer at the 

electrode. The DC residual curve of the Iodized Pt electrode, although 

not shown, was identical in appearance to the voltammogram obtained in 

the presence of 7 x 10 M Cr̂ Ô  . In contrast to these results, the 

presence of 7 x 10 M Cr̂ Ô  was readily observed with HMVE(AM) at the 

same electrode. On the basis of these results, the detection limit 

2- —fi 
for CrgOy using HMVE(AM) is estimated at 1 x 10 M. This experi

ment illustrates the increase in sensitivity afforded by the HMVE(AM) 

technique in a system in which faradalc surface reactions of the 

electrode are absent (139). 

D. Relationship of AÎ  in HMVE(AM) to Percentage of Modulation 

For a given concentration of electroactive species, the value of 

ÛIĵ  observed for HMVE(AM) is dependent on the percentage of modulation 

of â p for the vibrating electrode. The results of an investigation 
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Figure VI-2. DC and HMVE(AM) voltammograms of 7.8 x 10 ̂  M GCgOy in 1.0 M Ĥ SÔ  

-8 2-
A — DC voltammogram of 7.0 x 10 M Cr20% in 1.0 M H2SO4; B — HMVE(AM) voltanmogram of 
1.0 M HgSÔ ; C - HMVE(AM) voltammogram of 7.0 x lO'S M CrgÔ " in 1.0 M EgSÔ ,. 

Scan rate = 2.0 V min DC; f = 240 Hz; Rê  = 31; app = 0.234 mm; HMVE(AM): f = 
240 Hz; average Rê  = 31; 33.3% modulation; Electrode A. 
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of this dependence are presented in Table VI-1. As predicted from 

Equation V-6, the value of increases with increasing modulation of 

the vibrational amplitude. Therefore, the signal-to-noise ratio of 

the analytical signal (61̂ ) relative to electronic noise generated by 

the instrumentation is most favorable at large percentages of modula

tion, and the detection limits for determinations limited by electronic 

noise decrease with an increase in the percentage of modulation. How

ever, the detection limit for HMVE(AM) remains unchanged for trace 

determinations which are limited by the background level of re

sulting from electrochemical processes, because the background and 

analytical components of are identically affected by increases in 

the percentages of modulation. 

E. Determination of 0̂  by HMVE(AM) and DC Voltammetry 

In the research described in this section, HMVE(AM) and DC volt

ammetry were applied to the determination of dissolved 0% present at 

macro and trace levels. For calibration of the electrode, solutions 

containing standard concentrations of 0̂  were produced by bubbling 

known mixtures of and 0̂  through 0.010 M Ĥ SÔ , which served as the 

supporting electrolyte. Each mixture was bubbled from a Pasteur plpet 

through the solution for a period of 20 min prior to recording the HMVE(AM) 

and DC voltammograms, and the solution was blanketed with the mixture 

during the 2 analyses. The standard mixtures were formulated by Air 

Products and Chemicals, Inc., Allentown, FA, and ranged in Og content 

from 0.100% to 10.0% (v/v) 0̂ . Voltammograms were also obtained for 
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Table VI-1. as a function of percentage of modulation* 

Modulation at f = 240 Hz AIj at f = 360 Hz 
(w (V'" 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

40.0 

45.0 

50.0 

55.0 

60.0 

65.0 

70.0 

75.0 

80.0 

85.0 

90.0 

95.0 

100.0 

2.48 

5.19 

8.10 

11.2 

14.8 

18.4 

21.9 

25.8 

28.6 

31.8 

35.0 

38.1 

41.1 

44.0 

46.7 

49.2 

51.4 

53.3 

55.2 

56.8 

2.01 

4.24 

6.16 

7.87 

9.62 

12.1 

16.3 

21.4 

27.4 

33.7 

40.0 

45.8 

51.1 

55.8 

60.3 

64.1 

67.6 

70.6 

73.4 

75.8 

Êlectrode B; 1.0 mM l" In 1.0 M Ĥ SÔ ; = + 0.800 V vs. SCE. 

Âverage Rê  = 28; average â  ̂= 0.203 mm. 

'̂ Average Rê  = 66; average â  ̂= 0.319 mm. 
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0.010 M HgSÔ  saturated with pure 0̂  and with air, obtained from the 

compressed air line in the laboratory. The experimental values of 

and for these mixtures are presented in Table Vl-2. Since the 

values differed for the positive and negative scans of applied poten

tial, these data are noted for both scan directions. Calibration 

curves were constructed from the data for each scan direction, and 

these calibration curves were used to calculate the percentage of 0̂  

in the air, based on the recorded values of and noted for the 

air-saturated solution. The calculated values for the percentage of 

0- in air are tabulated in Table VI-3. Because the currents observed 

for pure 0̂  were smaller than the expected values based on the other 

standards, the calculated concentrations of 0̂  in air were also ob

tained from extrapolation of the line formed by the current values for 

the 5 mixtures, omitting the points for pure 0̂ . These latter 

calculated percentages are closer to the accepted value, 20.95% (v/v) 

(140), than those calculated using the calibration curves in which the 

points for pure Og were included. Significant nonlinearity was noted 

at lower concentrations, as well. Similar nonlinearity was observed 

with the same system by Kuster (26), as previously noted. 

The reduction of dissolved 0̂  constitutes a significant inter

ference in numerous electroanalytical applications of Pt electrodes, 

and the complete removal of dissolved 0̂  is consequently of great im

portance in applications of voltammetry to trace analyses. Because of 

its high sensitivity in the determination of 0̂ , the HMVE(AM) technique 

was applied to the evaluation of the effectiveness of deaeration for 

removal of dissolved O2 from solution. The concentration of O2 in 
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Table VI-2. Experimental data for determination of percentage of 0 
in air* 

Concentration 
of Og (% v/v) 

DC I, (WA) HMVE(AM) All (mAoo) Concentration 
of Og (% v/v) Neg. scan Fos. scan Neg. scan Fos. scan 

0.1 1.51 0.25 0.717 0.610 

0.5 4.77 3.63 3.03 2.77 

1.0 8.26 7.08 5.83 5.42 

4.0 30.9 29.8 22.8 22.0 

10.0 72.0 71.1 54.8 54.1 

100.0 664 656 449 472 

Air" 149.1 149.7 112.9 115.4 

*Scan rate = 2.0 V min ; O.OIOMH2SO4; DC: f = 120 Hz; Rey = 47; 
a_p = 0.681 trnupp; HMVE(AM): f = 120 Hz; average Rê  = 47; 95% modula
tion; Electrode B; all currents measured at Ê  = 0.000 V vs. SCE. 

Âtmospheric pressure = 983.5 mbar; temperature = 21.2 C. 
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a b 
Table VI-3. Calculated values for percentage of 0̂  in air ' 

Range of stan
dards (% v/v) Technique 

Calculated percentages 
(% v/v) 

Neg. scan Pos. scan 

0.1-10.0 DC 21.1 21.3 

0.1-10.0 HMVE(AM) 20.7 21.1 

0.1-100.0 DC 21.3 21.9 

0.1-100.0 HMVE(AM) 23.5 24.1 

Êxperimental data and conditions shown in Table VI-2. 

Âccepted value = 20.95 % (v/v) (140). 



www.manaraa.com

172 

the deaerated solution was estimated from comparison of the height of 

the Og wave observed In the deaerated solution with that observed In 

air-saturated 1.0 M Ĥ SÔ . The ratio of the value of for the de

aerated solution to the value of AIĵ  for the air-saturated solution 

was multiplied by the concentration of 0̂  In the air-saturated solu

tion, 2.5 X 10 ̂  M (p. 383 of 141). Analyses performed in this manner 

demonstrated that deaeratlon of the covered cell (see Chapter III, 

Section F) using the Pasteur plpet reduced the concentration of dis

solved Og to a constant concentration, typically 2 x lO"̂  to 4 x lO"̂  M, 

within 20 mln. The lowest value obtained was 9.8 x 10 M. The detec

tion limit for 0̂  using HMVE(AM) was estimated to be 2 x 10 ̂  M, for 

a signal-to-nolse ratio of 2. In contrast, no clear 0̂  wave was noted 

at an 0̂  level of 1 x 10 ̂  M in the DC voltammogram; only a small off

set on the Ft residual voltammogram was observed at potentials.from 0 

to + 0.2 V vs. SCE. 

Extensive attempts were made to further reduce the concentration 

of dissolved 0̂  in the deaerated solutions, without success. Purifica

tion systems employing V(II) and Cr(II) solutions in gas scrubbing 

bottles were Inserted into the stream but failed to reduce the height 

of the Og wave obtained in deaerated solutions (pp. 89-90 of 141, 142). 

These measures also Introduced impurities into the which were 

adsorbed onto the Ft electrodes, producing spurious peaks in the 

residual voltammograms. From the results of these experiments, it 

was concluded that the residual level of dissolved 0̂  did not originate 

In an Og impurity in the gas used for deaeratlon, but resulted 

Instead from Incomplete deaeratlon of the solution and/or diffusion 



www.manaraa.com

173 

of Og from the outside air through the holes in the Teflon cover of 

the cell. 

F. Conclusion 

Comparisons of HMVE(AM), HMVE(FM), and DC voltammetry have shown 

that the application of hydrodynamic modulation to the determination 

of electroactive species yields a ten-fold to hundred-fold Increase in 

analytical sensitivity with a corresponding decrease in the detection 

limit. Residual values of observed at Ft RDEs and vibrating elec

trodes have been ascribed to the mass-transport controlled dissolution 

of Ft from the electrode. These background values correspond directly 

to the small changes noted in residual voltammograms obtained at a Ft 

RDE rotated at 400 and 10,000 RFM. The HMVE(AM) and HMVE(FM) techniques 

produce identical voltammograms, as predicted from theory, although 

the amplitude of observed in HMVE(FM) is somewhat reduced from 

corresponding values observed in HMVE(AM). Because the instrumentation 

required for production of HMVE(AM) is simpler than that required for 

HMVE(FM), the former technique is preferred. 

The HMVE(AM) technique was applied to the analysis of dissolved 

Og, with excellent agreement found between the calculated and accepted 

values for the percentage of Og in air. Application of the same tech

nique in the evaluation of the effectiveness of deaeration showed that 

small residual levels of dissolved Og resulted from diffusion of 0̂  

from the outside air into the cell. The level of dissolved Og achieved 

-7 in the deaerated solutions was approximately 2 x 10 M, corresponding 



www.manaraa.com

174 

to 99.9% effectiveness of the deaeration. 

Slight nonlinearity in the calibration curves of AIĵ  vs. concentra

tion of Og was noted over the range of 0.1% to 100% (v/v) 0̂ . 
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VII. FLOW-INJECTION ANALYSIS 

In this chapter the application of vibrating electrodes to flow-

injection analysis (FIA) is demonstrated. Equations are derived and 

verified which describe the response of vibrating electrodes in flowing 

streams. 

A. Literature 

The basic principles, literature, and applications of FIA have 

been reviewed in recent feature articles in Analytical Chemistry (143, 

144). The reader unfamiliar with FIA should consult these publica

tions for a general treatment of the topic. 

The first application of an electrochemical sensor in a flowing 

stream was made by Muller (145) in 1947. In recent years, the response 

of numerous forms of electrochemical detectors in flowing streams has 

been investigated (146). Recent developments in this laboratory have 

included the flow-through wire (147) and disc (148) electrodes. 

Other investigations related to the present work include the re

search of Pungor, et al. (149) into the response of potentiometric 

detectors in FIA. These workers derived equations describing the ef

fect of a mixing chamber inserted between the point of sample injec

tion and the detector. 

Wang and Ariel employed RDEs in the determination of trace metals 

in flowing streams by anodic stripping voltammetry (ASV) (150. 151). 

Because the systems developed by Wang and Ariel used a conventional 

RDE, the diameter of the tubing (7 mm) and flow rates employed in the 

analyses (5-100 mL mir'̂ ) were both far greater than values conven-
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tionally employed in FIA (typically 0.9 mm and 1.0 mL min respectively). 

The peak currents obtained in ASV were proportional to the square root 

of the flow rate when the disc electrode was stationary, and Independent 

of the flow rate when the disc was rotated. At the RDE, the peak cur

rents were proportional to the square root of the rotation speed. In 

their latter system (151), the authors noted that the peak currents 

measured under conditions of plug injection were less than the peak 

currents measured under steady-state conditions for delays of less than 

60 sec, measured from the time of arrival of the sample solution at the 

detector to the initiation of the deposition step. Equations describing 

this relationship were not derived, however. 

Gosterhuis, et al. (152) applied an RDE to the analysis of catechol

amines in flowing streams. The RDE was employed both in conventional 

FIA and as a detector for liquid chromatography at a flow rate of 

1.0 mL min A three-fold improvement in the sensitivity was noted 

for the RDE at = 1200 RPM relative to the same electrode when 

stationary, and the detection limit for dopamine was estimated at "a 

few tenths of a nanogram." The dependence of the peak current on the 

flow rate was not investigated. Negative deviations from the ex-

1/2 
pected proportionality between the peak current and u)̂  were ascribed 

to wall effects arising from the use of a small cell (diameter = 9 tna). 

Blaedel and Schieffer (153) designed a turbulent tubular electrode, in 

which a rotating stirrer located within a conventional tubular electrode in

duced turbulent flow. At low rotation speeds of the stirrer, the 

limiting current observed in a continuously flowing stream of analyte 

was dependent on the cube root of the volume flow rate, Vf. At high 
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rotation speeds, greater than 2000 RPM, the current was independent of 

the flow rate, and the limiting current depended on the square root of 

3-
the rotation speed of the stirrer. The detection limit for Fe(CN)g 

was below 0.1 |iM, and a five-fold increase in sensitivity was noted at 

a stirring rate of 3430 RPM relative to that at 0 RPM. 

Johansson (154) designed a coulometric detector for liquid 

chromatography in which rotation of Pt gauze electrodes aided the mass 

transport to the working electrode. 

The investigations by Passwaters (30) of vibrating electrodes in 

flowing streams have been discussed in Chapter II of this dissertation. 

B. Theory 

For the purposes of this theoretical development, the FIA system 

employed in this research is modeled as a vibrating electrode contained 

in a cell of constant volume, The cell is provided with an 

inlet and an outlet for the flow of solution into and out of the cell, 

respectively. The following 7 assumptions are postulated regarding 

the behavior of this system: 

1. The rates of inflow and outflow to and from the cell, 

respectively, are both equal to v̂ , the volume flow rate of the FIA 

system. 

2. The background concentration of the electroactlve species 

(analyte) in the supporting electrolyte is zero. 

3. A sample plug of volume containing analyte at a concentra

tion C is injected into the inlet channel. This plug experiences no 
o 
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dispersion in the inlet channel and consequently reaches the cell in 

the form of a "square" plug. 

4. The time t = 0 is defined as the point in time at which the 

leading edge of the sample plug reaches the cell. The length of the 

plug expressed in units of time is designated as T, where T = V̂ /VG. 

5. Instantaneous, perfect mixing of the contents of the cell 

results from the vibration of the electrode. Consequently, the solu

tion in the cell is homogeneous, and each volume Increment, dV, of 

solution flowing into the outlet channel is thus a representative 

sample of the contents of the cell at the corresponding point in 

time. Mixing effects do not extend beyond the boundaries of the cell. 

6. The vibrating electrode is operated under the mass-transport 

limited conditions applicable to Equation 1-6, i.e., on the limiting 

plateau for oxidation or reduction of the analyte. 

7. The mass transport coefficient for the electrode, k̂ , is 

independent of the value of v̂ . The flux of analyte to the vibrating 

electrode is thus (dN/dt)̂ ^̂  ̂= Ak̂ C(t), where C(t) represents the 

Instantaneous concentration of analyte in the cell. 

The validity of assumptions 3, 5, and 7 as applied to the FIA 

system developed for this research is discussed in Section D of this 

chapter. 

The mathematical relationships describing the behavior of the 

vibrating electrode in FIA are readily derived through application of 

the principle of material balance, which is widely employed in chemical 

engineering (155). Analyte entering the cell through the inlet channel 

may either temaln in the cell, leave the cell through the outlet 
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chaimel, or react at the electrode. For a given increment of time dt, 

the quantity of analyte accumulating in the cell equals the quantity 

entering the cell minus the sum of the quantities leaving the cell or 

reacting at the electrode. Expressing these 4 quantities as incremental 

numbers of moles yields Equation VII-1, the fundamental material balance 

for this system. 

®celX = "in - (™out + ™elec> 

Utilization of the basic relationship between quantity, volume, and 

concentration permits these incremental quantities of analyte to be 

expressed in terms of incremental volumes and concentrations. 

For the period from t = 0 to t = T, corresponding to the inflow of 

sample into the cell, the expression of material balance is given by 

Equation VII-2. 

Vcell̂ C = + "olecl 

Division of both members of Equation VII-2 by dt, the period of time 

corresponding to the incremental accumulation of analyte, yields 

Equation VII-3, The derivative dV/dt is equivalent to the volume flow 

rate, v̂ . 

Vcell̂ C/dt = Ĉ Vg - [C(t)Vf + (dN/dt)̂ ^̂ ]̂ (VII-3) 

Substitution of the expression for the flux of analyte to the electrode 

results in Equation VII-4: 

Vcell4G/dt = Ĉ Vg - [C(t)Vf + Ak̂ C(t)] (VII-4) 
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Algebraic transformation of this equation yields Equation VII-5; 

dC/dt + t(Vj + (VII-5) 

Equation VII-5 is a first-order linear differential equation of the 

form dy/dt + py(t) = q, where y(t) Is a function of time and p and q 

are constants. Such equations are most expeditiously solved (156) by 

multiplication of all terms by an integrating factor, exp(pt). The 

entire left member becomes an exact derivative of exp(pt)y(t), and the 

solution is readily obtained by Integration of the right member fol

lowed by algebraic manipulation. The solution is of the form given In 

Equation VII-6: 

y(t) = q/p + k exp (- pt) (VII-6) 

The constant k results from the Integration of the right member. Sub

stitution of the variables and constants in Equation VII-5 corresponding 

to y(t), p, and q in the general solution gives Equation VII-7, the 

solution to Equation VII-5. 

C(t) = Ĉ vg/(v̂  + Ak̂ ) + k exp [- (Vg + Akn)/Vcell]t (VII-7) 

At the point when the leading edge of the sample plug reaches the 

cell, the concentration of analyte in the cell is zero. This initial 

condition, which together with Equation VII-5 constitutes an ideal 

value problem (156), is expressed by Equation VII-8: 

C(t) = 0 at t = 0. (VII-8) 

This initial condition determines the value of k in Equation VII-7. 
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Evaluation of k in this manner followed by substitution of the 

calculated value back into Equation VII-7 completes the solution of 

the initial value problem. The solution is given in Equation VII-9. 

C(t) = tVf/CVf + Ak̂ )] (l - exp t- (Vg + AkJ/Vcell̂ t) 

(VII-9) 

Equation VII-9 describes the concentration of analyte in the cell as 

a function of time for the period from t = 0 to t = T, during which 

the sample plug is entering the cell. 

To derive the equation describing the concentration of analyte in 

the cell after t = T, the point at which the trailing edge of the 

sample plug passes into the cell, it is necessary to return to the 

basic material balance for the system. Since no new analyte is entering 

the cell, the material balance in this case is given by Equation VII-10, 

which is analogous to Equation VII-1, 

40.ell = -

Development of this equation in a manner paralleling that shown in 

Equations VII-2 through VII-4 yields Equation VII-11; 

Vceiî C/dt = - [C(t)VG + Ak̂ C(t)] (VII-11) 

Algebraic transformation results in an equivalent form: 

dC/C(t) = - t(v£ + AkJ/V̂ gĵ ĵ ]dt (VII-12) 

Integration of both members of Equation VII-12 between limits of t » T 

and t = t for the right member and the corresponding limits of C(T) 
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and C(t) for the left member gives Equation VII-13. 

ln[C(t)/C(T)] = - [(v̂  + - T) (VII-13) 

Exponentiation of both members followed by multiplication of both sides 

of the resultant equation by C(T) yields Equation VII-14. 

C(t) = C(T) exp [(vj + AkQ)/Vggii](t - T)| (VII-14) 

C(T) is given by Equation VII-9 for t = T. Equation VII-14 describes 

the concentration of analyte in the cell for all times after t = T. 

When combined with Equation 1-6, Equations VII-9 and VII-14 also 

define the limiting current observed in FIA, Î (t), for the injection 

of a sample peak of concentration Ĉ . The value of Î (t) is calculated 

from Equation 1-6 using the corresponding value of C(t) calculated from 

Equation VII-9 or VII-14. 

A significant observation regarding both Equations VII-9 and VII-14 

is that the value of C(t), and therefore Î (t), is directly proportional 

to Ĉ , the concentration of analyte in the sample. Hence, the desired 

linear relationship between Iĵ  and the concentration of analyte in 

the sample is also valid for the vibrating electrode in FIA. 

Cursory inspection of Equation VII-9 reveals that the right member 

is composed of 2 primary factors. The first factor is independent of 

time and describes the concentration of analyte attained in the cell 

after steady-state conditions have been established. The second factor 

describes the exponential increase in concentration which occurs during 

the period that the sample plug is entering the cell. Steady-state 

conditions are attained when the value of the second factor becomes 
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unity, i.e., at times approaching infinity for a plug of infinite length. 

Experimentally, such conditions are produced by substitution of a 

solution of analyte at concentration for the supporting electrolyte 

postulated in the second assumption of the theoretical treatment. 

The steady-state values for the concentration, 0̂ ,̂ and the limiting 

current, are defined by Equations VII-15 and VII-16, respectively. 

C,. = (VII.15) 

'l.ss -

The fractional conversion, e, for the vibrating electrode in FIA is 

defined as the fraction of analyte entering the cell which reacts at 

the electrode. It is most readily calculated by dividing the steady-

state flux of analyte to the electrode, Ak C , by the total influx of 
m ss 

analyte into the cell, v̂ Ĉ . Substitution of the expression given in 

Equation VII-15 for in this ratio yields Equation VII-17, which is 

used to calculate the value of ®. It is significant that the frac

tional conversion of the electrode is independent of the value of 

«=Ak/(v. + Ak) (VII-17) 
m t m 

Experimentally, c is calculated from the ratio of Î  to the 

current which would result from quantitative (coulometric) reaction of 

the analyte at the electrode. Î ^̂  ̂is defined by Equation VII-18. 

^ooul ' (VII-18) 



www.manaraa.com

184 

The product 100* is referred to as the conversion efficiency of the 

electrode. 

Equations corresponding to Equations VII-15 and VII-17 are given 

by Pickett in his discussion of the continuously stirred tank electro

chemical reactor (CSTER) (155). However, Pickett only considers the 

equations relating to steady-state, continuous operation of the CSTER, 

which are of primary interest in chemical engineering. Pickett de

fines the ideal CSTER as 

"a flow reactor which operates at a steady state with 
perfect mixing of the contents. The composition of 
the solution leaving the reactor is constant and is 
the same as that of the solution within the reactor." 

From this definition, it is evident that the vibrating electrode md 

flow system, when operated under steady-state conditions, constitute 

a CSTER. The vibrating electrode combines the functions of electrode 

and stirrei. 

Analysis of Equations VII-9, VII-14, and VII-17 shows that 2 

parameters may be independently varied for a given electrode and flow 

system, viz., v̂  and k̂ . The value of v̂  is governed by the flow 

system and that of k̂  (and thus Ak̂ ) by the vibrational parameters. 

It is instructive to consider the limiting cases defined by the rela

tive magnitudes of v̂  and Ak̂ . 

For Vg ̂  Ak̂ , Equations VII-9 and VII-17 reduce to the forms 

given in Equations VII-19 and VII-20, respectively; 

C(t) = Ĉ jl - exp [- (Vf/Vceii)t]) (VII-19) 

C = 0 (VII-20) 
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Equation VII-19 is equivalent to the corresponding equation derived 

by Pungor, et al. (149) for potentiometric electrodes in flowing systems 

in which the electrode is preceded by a mixing chamber. Potentiometric 

electrodes, by definition, operate at zero current and consequently 

consume no arialyte. The conversion efficiency is thus 0%, and the 

value of Ak is thus zero. Therefore, the conditions set forth for 
m 

the derivation of Equations VII-19 and VII-20 are satisfied. Equation 

VII-19 should also be applicable to amperometric electrodes of low ef

ficiency (e.g., tubular electrodes) in similar systems, where a mixing 

chamber precedes the electrode. 

In their derivation, Pungor and co-workers did not consider the 

use of amperometric electrodes in flowing streams, and the equations 

described in the present work constitute a significant extension of 

those derived by Pungor, et al. It is Interesting to note that the 

consumption of analyte by the electrode affects both the concentration 

of analyte in the cell at steady-state conditions and the "time 

constant" of the response of the cell to a plug of injected analyte. 

For Ak̂  Equations VII-9 and VII-17 reduce to the forms 

given in Equations VII-21 and VII-22, respectively. 

C(t) =0 (VII-21) 

e = 1.0 (VII-22) 

These trivial results indicate that the electrode in this hypothetical 

system operates at 100% efficiency and that the analyte quantitatively 

reacts at the electrode. Both results indicate that the electrode is 

coulometric. Also, Equation VII-16 reduces to Equation VII-18. This 
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is the equation for a coulometric electrode, as previously noted. 

If the concentration of analyte in the cell is C(t) = ̂ init 

the flow of solution through the cell is suddenly stopped, the cur

rent decays according to Equation VII-14, where replaces C(T). 

However, v̂  = 0 and therefore may be eliminated from the equation. 

Hence, Equation VII-14 reduces to the form shown in Equation VII-23: 

Equation VII-23 is identical to that derived by Meites (p. 516 of 141) 

for the bulk electrolysis of the contents of an electrolytic cell. 

The constant Ak /V ., is equal to AD/V ._6, the cell constant. 
m cell  ̂ cell 

The preceding arguments have illustrated that the equations de

rived in this section comprise a generalization of several previously 

known equations which apply to seemingly unrelated systems. They also 

show the relationship of the vibrating electrode in FIA to other, more 

familiar methods. 

The equations derived in this section should also apply to systems 

employing RDEs in FIA, because the rate of mass transport to the RDE 

is independent of the flow rate and the contents of the cell are mixed 

by the RDE. The negative deviations from proportionality between the 

1/2 
peak current and noted by Oosterhuis, et al. (152) are likely 

due to the significant consumption of analyte by the RDE with conse

quent lowering of C(t) in the cell. This effect would increase at 

larger values of due to the resultant increase in k̂  for the RDE. 

The equations also should apply to the turbulent tubular electrode 

(153), although the definition of Vgĝ i for this system is vague. 
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However, these equations are not valid for cases such as the packed bed 

(157) and reticulated vitreous carbon (158) electrodes, In which the 

assumptions of perfect mixing and homogeneity of the contents of the 

cell are not satisfied. 

C. Engineering and Instrumentation 

The experimental studies of vibrating electrodes in FIA were all 

conducted with Electrode B, which was constructed, mounted, and 

operated as described in Chapter 111 of this dissertation. Recordings 

of the limiting currents, designated as Î (t) and Al̂ (t) for the DC 

and HMVE(AM) studies, respectively, were obtained using a Speedmnax 

XL-680 strip-chart recorder, manufactured by the Leeds and Northrup 

Co., North Wales, FA. The remaining electronic Instrumentation em

ployed in these experiments has been presented in Chapter IV. 

In the absence of analyte, background potentials on the order of 

50 mV were observed at the current output of the potentiostat. These 

background potentials, which originated from the bias currents of the 

operational amplifiers comprising the instrumentation amplifier and 

from the residual current at the working electrode, were offset to 

zero by the circuit depicted in Figure VII-1. When connected between 

the potentiostat and recorder as shown, this circuit permitted cancella

tion of background potentials up to 85 mV. Negative potentials were 

offset by reversal of the 2 leads to the offset circuit. The 20 Kn. 

resistor and 10-̂ F capacitor comprised an LP filter with a time constant 

of 0.2 sec, which filtered out the high-frequency noise produced by 
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Figure VII-1. Schematic diagram of offset circuit 

BI — Hg cell, 1.35 V; PI — 10-turn precision potentiometer; SI — SPST switch. 
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the potentiostat. The IO-JAF capacitor was connected across the input 

leads to the recorder and was used only when required. 

Insertion of this offset circuit and LP filter allowed recordings 

of Î (t) to be obtained at current sensitivities as high as 500 pA in."̂ , 

a twenty-fold improvement over the most sensitive value previously at

tained in this laboratory. At this sensitivity, adjustment of PI was 

still readily performed. 

The flow-through cell for the vibrating electrode was constructed 

in the machine shop at Iowa State University. The central portion of 

this cell is depicted in Figure VII-2. The body of the cell was 

constructed from silica-loaded Teflon and had a central compartment 

for the vibrating electrode, an inlet channel, an outlet channel, and 

2 separate compartments for the reference and counter electrodes, 

respectively. The front and rear sides of the compartment for the 

vibrating electrode were made from 2.5 x 3.5-cm plates of glass ob

tained from microscope slides. Sheets of transparent Teflon tape were 

sandwiched between the cell body and the glass plates to minimize 

seepage of electrolyte from the electrode cranpartment. The transparent 

sides of the electrode compartment permitted ̂  situ observation of the 

electrode during operation. The glass plates and Teflon tape were 

tightly clamped to the cell body by means of 2 U-shaped metal plates. 

The compartment for the vibrating electrode had a cross section 

of 4.0 X 2.4 mm and during operation was filled to the level of the 

outlet channel, 17.5 mm above the inlet. The lowermost 2.0 mm of the 

compartment, when viewed from the side, were semicircular in shape. 

The volume of the compartment as calculated from these dimensions was 
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Figure VII-2. Cross section of central portion of flow-through cell showing vibrating electrode 

Area within rectangle PQRS is covered by Teflon tape and glass plate. 

H = holes (6) for screws used to mount U-shaped clamp; CE = counter electrode; 
SCE = saturated calomel electrode. 

Scale =2.5:1. 
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164 ML. This calculated value agreed, within experimental error, with 

the measured value, 165 ̂ L, which was obtained by direct measurement 

of the volume of water required to fill the compartment to the level 

of the outlet channel. With the vibrating electrode positioned in this 

central compartment, the measured volume was 155 ML, indicating that 

a volume of 10 IJL was displaced by the electrode. 

Prior to operation, it was necessary to fill the chambers for the 

reference and counter electrodes with electrolyte. Care was taken to 

ensure that the narrow passages connecting these 2 chambers with the 

central compartment were free from bubbles. The outlet channel of the 

flow-through cell was connected to a waste bottle, which in turn was 

connected to an aspirator. The waste bottle was provided with an air

tight cover, and maintenance of a partial vacuum in the bottle ensured 

flow of solution through the outlet channel. 

The flow-through cell was mounted on a miniature lab jack, manu

factured by Precision Scientific, Chicago, IL, This lab jack permitted 

precise vertical positioning of the flow-through cell without alteration 

of the horizontal position of the cell. The vibrating electrode was 

inserted into the central conpartment of the flow-through cell by 

vertically raising the cell until the electrode was positioned in the 

center of the compartment. In its final position, the tip of the 

electrode was situated 4 mm above the end of the inlet channel. The 

tubing connected to the inlet of the flow-through cell passed through 

a hole in the upper platform of the lab jack. 

The flow system consisted of 4 basic components: the flow-through 

cell described above, a sample injection valve, a source bottle, and 
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a waste bottle. Interconnections between these components were made 

with 0.9-mm i.d. Teflon tubing. The source bottle was connected to the 

inlet of the injection valve with a 1.5-m length of tubing, which was 

shielded with A1 foil to reduce pickup of electrical noise. The flow-

through cell and sample injection valve were both enclosed in a single 

Faraday cage, and the source bottle was similarly shielded. All 

shielding was directly connected to a water-pipe ground. 

Dispersion of the sample plug was minimized by utilization of a 

minimal length of tubing, 11 cm, between the injection valve and the 

inlet to the cell. The waste bottle, which was located external to the 

Faraday cage, was connected to the outlet channel of the cell with a 

35-cm length of tubing. 

Connections of Teflon tubing to the basic components of the flow 

system were made with Cheminert tube-end fittings and hardware, manu

factured by Laboratory Data Controls, Riviera Beach, FL. The sample 

injection valve. Laboratory Data Controls model SVA8031, was a 4-way 

pneumatically actuated unit. Application of compressed air (70 psi) 

was controlled by an electrically operated solenoid valve. This auto

matic injection technique ensured reproducible sample injections. 

The volume of the sample loop used with the injection valve was 0.955 mL. 

The value of v̂  for the flow system was governed by the head of 

pressure of the solution in the source bottle. In this system, the 

head of pressure was equal to the height of the surface of the solution 

above the outlet channel of the cell. Discrete, reproducible values of 

Vg were obtained by placing the source bottle, filled to a standard 

level, on any of 4 separate shelves located above the laboratory bench. 
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The level of the solution was maintained within a tolerance of + 0.5 cm 

from the standard level, corresponding to a maxLmuto variation of + 2% 

in the head of pressure. The experimental values of v̂  were measured 

by recording the time required for a known volume of solution, 2.00 

or 3.00 ml, to accumulate in a 10-mL buret. For this measurement, 

an 11-cm length of tubing was substituted for the connection to the 

cell, and the end of this tubing was situated at the same level as 

the outlet of the cell. 

Experimental values of v̂  measured at each of the 4 levels are 

tabulated in Table VII-1. At each head of pressure, the observed 

values of Vg differ significantly for the 2 positions of the injection 

valve. This effect arises from the nature of the driving force for the 

flow. Because this flow system relies on gravity feed and not on a 

positive displacement pump, the additional resistance presented by the 

sample loop reduces the flow rate from the value observed with the 

shorter bypass loop in the flow system. In both cases, however, the 

value of Vg is directly proportional to the head of pressure. 

For the evaluation of experimental data obtained with this flow 

system, the value of v̂  used in the calculations was that prevailing 

at the time of measurement of Î (t). In most cases the applicable 

value of Vg was that measured with the sample injection valve in the 

On position, because the valve remained in this position during re

cording of the entire peak. 



www.manaraa.com

Table VII-1. Flow rate as a function of head of pressure 

Head of pressure Flow rate at indicated position of injection valvê  
(cm) Off (mL min'l) On (mL min'l) Off (mL sec"l) On (mL sec'l) 

37.7 0.800 0.632 0.0133 0.0105 

65.1 1.38 1.09 0.0229 0.0182 

97.8 2.09 1.69 0.0348 0.0281 

133.5 2.85 2.32 0.0475 0.0386 

*Off: bypass loop in flow stream; On; sample loop (V̂  = 0.955 mL) in flow stream. 



www.manaraa.com

197 

D. Experimental Evaluation of Equations 

Residual voltammograms of Electrode B in the flow system are il

lustrated in Figure VII-3. Both voltammograms were obtained in air-

saturated 0.01 M HgSÔ  at Vg = 0.63 mL min ̂ , and the electrode was 

either held stationary or vibrated at Rê  =66.5, as designated in the 

figure. Mass-transport limited currents were observed at potentials of 

less than + 0.1 V vs. SCE, corresponding to the reduction of dissolved 

Og. These currents increased ten-fold upon vibration of the electrode. 

The increased value of the mass-transport limited current noted at the 

vibrating electrode dramatically illustrates the enhancement of mass 

transport resulting from the vibration of the electrode. These results 

show that the sensitivity and conversion efficiency of the vibrating 

electrode are each approximately 10 times greater than the corresponding 

values for the same electrode when stationary. 

The measured values of at the vibrating electrode were ap

proximately 3.5% greater at v̂  = 2.09 mL min ̂  than at v̂  = 0.80 mL min 

At first glance, these data appear to contradict the assumption that 

the value of for the vibrating electrode is independent of v̂ . How

ever, more careful theoretical analysis reveals that the value of I, 
l,ss 

does exhibit a dependence on v̂ , as predicted by Equation VII-16. The 

increased value of I, at higher flow rates results not from an in-
1} ss 

crease in the value of k , but, rather, from the increased value of C 
m ss 

characteristic of the higher flow rate. 

The results of a study designed to test the validity of Equations 

VII-15 and VII-16 under experimental conditions are presented in 
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Figure VII-3. Effect of vibration of the electrode on mass transport in FIA 

-1 1 Scan rate = 5.0 V min ; f = 240.0 Hz; Rê  = 66.5; â - = 0.481 mm; vj = 0.800 mL min"̂ ; 
Electrode B; air-saturated 0.01 M H2S0̂ . 
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Table VII-2. Steady-state values of were measured at 8 known flow 

rates for the oxidation of 0.500 mM I" in 0.02 M HCl. The values of 

Icoui shown in the table were calculated from the experimental values 

of Vg and using Equation VII-18. The fractional conversion, «, was 

calculated for each flow rate from the ratio of the tabulated values of 

and From the experimental values of e, the product Ak̂  

was calculated for each flow rate by means of Equation VII-24, which 

was obtained by algebraic manipulation of Equation VII-17. 

Ak = v.e/(l - €) (VII-24) 
m f 

When expressed in equivalent units, the values of Ak̂  and v̂  represent 

the relative magnitudes of the flux of analyte to the electrode and the 

outflow of unreacted analyte from the cell, respectively. 

2 Division of Ak̂  by the geometric area of the electrode, 0.05052 cm , 

yielded the value of k̂  for the electrode. The thickness of the dif

fusion layer, 6, was calculated from this value of k̂  using Equation 

VII-25. 

6 = D/k̂  (VII-25) 

The value used for D was that employed previously, 1.56 x 10 ̂  cm̂ sec 

The calculated values of k and 6 are constant within 3% over the 
m 

range of flow rates studied, 0.63 to 2.85 mL min This result sup

ports the validity of the seventh assumption set forth in Section A of 

this chapter and lends credibility to Equations VII-15 and VII-16, 

which characterize the steady-state behavior of the vibrating electrode 

in FIA. 
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Table VII-2. Study of vibrating electrodes in FIA; steady-state 
conditions® 

Flow rate l̂,ss 
(|JA) 

"̂coul 
(ijA) 

G Akm 

(cm̂ sec"̂ ) (cm sec"̂ ) 

6 

(mL min (mL sec 
l̂,ss 

(|JA) 
"̂coul 
(ijA) 

Akm 

(cm̂ sec"̂ ) (cm sec"̂ ) (pm) 

0.632 0.0105 79.0 508 0.156 0.00194 0.0384 4.06 

0.800 0.0133 80.9 644 0.126 0.00192 0.0380 4.10 

1.09 0.0182 82.8 878 0.0944 0.00190 0.0376 4.15 

1.38 0.0229 84.2 1107 0.0761 0.00189 0.0374 4.17 

1.69 0.0281 85.2 1357 0.0628 0.00188 0.0372 4.19 

2.09 0.0348 86.3 1679 0.0514 0.00189 0.0374 4.17 

2.32 0.0386 86.5 1862 0.0465 0.00188 0.0372 4.19 

2.85 0.0475 87.9 2293 0.0383 0.00190 0.0376 4.15 

= 240.0 Hz; Rê  = 66.5; app = 0.481 mm; Electrode B; 0.500 mM I~ 
in 0.02 M HCl; = + 0.800 V vs. SCE. 
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The conversion efficiencies calculated for the vibrating electrode 

in this study varied from 15.6% at Vg = 0.63 mL min ̂  to 3.83% at v̂  = 

2.85 mL min These values compare with conversion efficiencies of 

0.93% at Vj = 2.0 mL min ̂  (2) and 0.35% at v̂  = 3.15 mL min ̂  (159) 

calculated from typical data quoted for tubular electrodes of similar 

area by Blaedel and co-workers. Hence, the vibrating electrode operates 

at conversion efficiencies 5 to 10 times greater than those obtained 

under corresponding conditions at the tubular electrode. As a result 

of this increased conversion efficiency, the detection limits observed 

at the vibrating electrode are expected to be 1/5 to 1/10 those noted 

by Blaedel for the tubular electrode, assuming that the background cur

rents, which are proportional to the area of the electrode, are of equal 

magnitude. 

Repetition of this experiment at v̂  = 0.632 mL min ̂  and v̂  = 1.69 

mL min ̂  yielded the results shown in Table VII-3. Values are also 

given for Ak , k , and ô calculated on the basis of I, observed at the 
m m 1 

same electrode in the batch cell, which is described in Section F of 

Chapter III. Since the batch cell was filled with the same solution 

employed for the sample plugs in the FIA experiments, Ak̂  and k̂  were 

calculated from Equation 1-6 for = Ĉ . 

The decreased value of I, in FIA relative to I, in the batch 
l,ss 1 

cell is a direct consequence of the depletion of analyte in the flow-

through cell. This depletion was not observed in the batch cell on 

the time scale employed in this experiment, due to the much larger 

cell volume, 28 mL. The values of Ak , k , and 6 calculated at the 2 
m m 

flow rates in FIA and in the batch cell agree to within 3%, showing 
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Table VII-3. Comparison of calculated values for km and 6 for Elec
trode B in flow-through and batch cells& 

Flow rate Il,ss Icoul c km 8 

(mL min ) (mL sec ) (MA) (liA) (cm̂ sec'̂ ) (cm sec"̂ ) (m) 

0.632 0.0105 84.3 508 0. 166 0.00209 0. 0414 3.77 

1.69 0.0281 91.2 1357 0. 0672 0.00203 0. 0402 3.88 

Batch cell 100.0 n.a.̂  n. 
b a. 0.00207̂  0. 0410 3.80 

f̂ = 240.0 Hz; Rey = 66.5; app = 0.481 mm; Electrode B; Cq = 0.500 
mM l" in 0.02 M HCl; Ê  = + 0.800 V vs. SCE. 

N̂ot applicable to batch cell (Chapter III, Section F). 

Ĉalculated using Equation 1-6 for Ĉ  = C . 
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that these parameters are essentially Independent of both the flow 

rate and the cell volume. 

This experiment also Illustrated a particular advantage of the 

vibrating electrode over other types of electrodes, namely, that the 

vibrating electrode may be operated under Identical conditions In 

both the batch and flow-through cells. The vibrating electrode and 

flow-through cell employed In these experiments were both designed 

to facilitate application of the vibrating electrode to batch analysis 

and FIA, This study represents the first application of a particular 

electrode to both batch analysis and FIA under Identical hydrodynamlc 

conditions. 

The values of Ak̂  shown In Table VII-3 are approximately 10% 

greater than those presented In Table VII-2. The smaller values In 

Table VII-2 likely result from partial fouling of the electrode by 

silicone stopcock grease, which was used to seal capillary leaks 

between the Teflon tape and the cell body. The value of Î  was re

stored to the original value, observed In Table VII-3, by dipping the 

electrode Into a concentrated solution of KOH In ethanol, which dis

solved the silicone grease. 

Having shown that the steady-state portions of Equations VII-9 

and VII-14 are valid. It Is now possible to study the time dependence 

of Iĵ (t) predicted by these equations. From Inspection of Equations 1-6, 

VII-9, and VII-16, it is evident that Equation VII-9 may be expressed 

in an alternate form. Equation VII-26, in which C(t) and C v./Cvv + Ak ) 
o t t m 

are replaced by Î (t) and Î  respectively; 
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Il(t) = II.,, {l - t- (V"-26) 

Algebraic transformation of Equation VII-26 produces an equivalent form: 

The ratio Î (t)/Î  represents the relative, time-dependent current 

and is consequently designated as Î . 

I, • 

Combination of Equations VII-27 and VII-28 followed by removal of the 

exponential portion yields Equation VII-29: 

In (1 - Y = - [(VF + AK^)/V^G^^]T (VII-29) 

For the rising portion of an observed peak, a graph of experimental 

values of In (1 - Î ) vs. time should be linear with a slope of 

- (v̂  + Ak )/V Hence, an effective value for V may be calcu-
r m cell cell 

lated from Equation VII-30. 

Vceii = - (v̂  + AkJ/slope (VII-30) 

From Inspection of Equations 1-6 and VII-14, it is evident that 

Equation VII-14 may similarly be expressed in an alternate form, shown 

in Equation VII-31. 

I (̂t) = I^(T) exp |[- (VG + Akn)/Vggii](t - T)J (VII-31) 

For the injection of a large sample plug, IJ (̂t) approaches Î  

Under such conditions, the portion of the peak during which Î (t) is 
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decaying Is described by Equation VII-32. 

IlC) • II,,. {[- - •") 

Substitution of Î , defined by Equation VII-28, followed by simplifica

tion yields Equation VIi-33. 

In Ip = - [(VJ + - T) (VII-33) 

A plot of experimental values of In Î  vs. time for the falling portion 

of an observed peak should also be linear with a slope of - (v̂  + ' 

Again, the effective value of V̂ ^̂  ̂for this portion of the peak may be 

calculated from Equation VII-30. 

Experimentally obtained data for both the rising and falling por

tions of the current peaks observed for the Injection of 0.500 mM l" 

In 0.020 M HCl are presented In Table VII-4 for v̂  = 0.632 mL mln 

In contrast to the theoretical treatment, the time t = 0 In these 

experiments was defined as the time that the Injection valve was switched 

to the On position. Due to the 11-cm length of tubing between the in

jection valve and the cell, these experimental times were greater than 

the theoretical times by (0.070/Vj)sec, for v̂  in mL sec The 

calculated values of In (1 - Î ) for the rising portion and In Î  

for the falling portion of the peak are graphed as a function of time 

in Figures VII-4 and VII-5, respectively. The slopes of these graphs 

-1 -1 
are - 0.161 sec for the rising portion of the peak and - 0.0924 sec' 

for the falling portion of the peak. These slopes were measured from 

the line determined by the lattermost 5 points shown on each graph; 

points corresponding to smaller values of t lay below the extrapolated 
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Table VII-4. Study of vibrating electrodes in FIA; plug injection at 
Vg = 0.632 mL min"̂  ̂  

Rising portion of peak Falling portion of peak 
t 

(sec) 
Il(t) 
(MA) 

In (1 - y t 
(sec) 

Il(t) 
(MA) 

In If 

0 0.0 0.000 72 84.3 0.000 

6 0.0 0.000 78 83.7 - 0.00716 

9 4.5 - 0.0550 84 80.3 - 0.0487 

12 20.4 - 0.278 90 73.3 - 0.139 

15 35.5 - 0.546 96 62.5 - 0.298 

18 48.4 - 0.854 102 49.6 - 0.530 

21 58.7 - 1.193 108 37.0 - 0.824 

24 66.8 - 1.576 114 26.1 - 1.174 

27 72.6 - 1.981 120 17.4 - 1.576 

30 76.9 - 2.431 126 11.0 - 2.034 

33 79.8 - 2.928 132 6.5 - 2.560 

36 81.5 - 3.402 138 3.7 - 3.124 

39 82.6 - 3.901 144 2.1 - 3.690 

42 83.4 - 4.537 150 1.2 - 4.250 

f̂ = 240.0 Hz; Rê  = 66.5; apn = 0.481 mm; Electrode B; Vg = 
0.955 mL; = 0.500 mM I" in 0.020 M HCl; Ê E = + 0.800 V vs. SCE; 
l̂,ss ~ 84.3 MA. 
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Figure VII-4. Graph of In (1 - Î ) vs. time for rising portion of 
peak 

For data and experimental conditions, see Table VII-4. 

Slope = - 0.1608 sec 
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Figure VII-5. Graph of In vs. time for falling portion of peak 

For data and experimental conditions, see Table VII-4. 

Slope = - 0.0924 sec 
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Table VII-5. Study of vibrating electrodes in FIA: plug injection 
at Vg = 1.69 mL min" 

Rising portion of peak Falling portion of peak 
t Il(t) In (1 - Ip) t Il(t) In Ip 

(sec) (WA) (sec) (liA) 

0 0.0 0.000 27 91.2 0.000 

3 0.0 0.000 30 88.3 - 0.0324 

6 40.6 - 0.589 33 81.0 . - 0.119 

9 69.2 - 1.424 36 68.0 - 0.293 

12 83.0 - 2.407 39 52.4 - 0.554 

15 88.1 - 3.379 42 36.4 - 0.919 

18 90.1 - 4.416 45 23.2 - 1.367 

21 90.8 - 5.427 48 13.7 - 1.893 

51 7.5 - 2.496 

54 3.8 - 3.176 

57 1.9 - 3.869 

60 0.9 - 4.616 

= 240.0 Hz; Rê  = 66.5; a__ = 0.481 mm; Electrode B; Vg = 
0.955 mL; C = 0.500 mM I" in 0.020 M HCl; = + 0.800 V vs. SCE; 
II.88 = 91.2 
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line. From these slopes, effective cell volumes were calculated using 

Equation VII-30. The values for Vg and Ak̂  were taken from Table VII-3. 

Data in this table were obtained concurrently with the data shown in 

Tables VII-4 and VII-5, thus assuring consistency of results. The 

"" X calculated values of at v̂  = 0.632 mL min were 78.5 n-L for the 

rising portion of the peak and 137 pL for the falling portion of the 

peak. 

Data from an analogous experiment conducted at Vg = 1.69 ml, min ̂  

are presented in Table VII-5. The slopes of the graphs of In (1 - Î ) 

and In Î  vs. t for these data were - 0.395 sec"̂  for the rising portion 

of the peak and - 0.230 sec  ̂for the falling portion, respectively. 

These slopes corresponded to effective cell volumes of 76.3 IJIj for the 

rising portion of the peak and 131 |iL for the falling portion. The 

graphs were similar in appearance to those shown for v̂  = 0.632 mL min 

For times between the rising and falling portions shown in Tables 

VII-4 and VII-5, the value of Î Ct) was within 1% of the steady-state 

II,as-

The effective cell volumes calculated in these experiments are 

significantly lower than the actual cell volumes calculated and measured 

in Section C of this chapter. A likely explanation for this divergence 

is that the mixing effects do not extend over the entire cell. Most 

notably, that portion of V̂ ^̂  ̂above the passage to the counter elec

trode is not instantaneously mixed with the solution below the electrode. 

The fifth assumption set forth in Section B of this chapter is therefore 

not strictly valid. 

The values of V̂ ell calculated for the falling portions of the 
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current peaks are approximately 72% larger than those calculated for 

the rising portions. This variance most likely results from dispersion 

of the trailing edge of the sample plug. The trailing edge must pass 

through the entire sample loop, 1.5 m in length, prior to reaching the 

cell. Hence, the dispersion of the trailing edge of the sample plug is 

significant, whereas that of the leading edge, which passes through 

but 11 cm of tubing before reaching the cell, is negligible. 

Observation of the central compartment of the flow-through cell 

during injection of a plug of 0.05% KMnÔ  into Ĥ O verified that the 

mixing effect of the vibrating electrode did not immediately extend over 

the entire central compartment. However, mixing in the lower portion of 

the cell was very rapid, and the composition of the region surrounding 

the working electrode, as estimated visually from the depth of color of 

the solution, appeared to be homogeneous. Significant dispersion of the 

trailing edge of the sample plug was also noted in this experiment. 

It is concluded that the assumption of Instantaneous, perfect mixing is 

substantially valid for most of the lower portion of the central compart

ment of the flow-through cell, although not for the entire cell volume. 

In addition, the assumption of zero dispersion in the injected sample 

plug is definitely not valid for the trailing edge of the plug, although 

it is a good approximation for the leading edge. The values of 78.5 IJL 

and 76.3 pL for the effective cell volume are therefore considered as 

indicative of the actual mixing conditions prevailing in the cell. 

The effect of time dependence of the mixing process on the peak 

shapes was not investigated in this research. However, it is likely 

that backmlxlng of analyte from the upper to the lower portion of the 
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electrode compartment occurs during the falling portion of the current 

peak and contributes to the observed increase in the effective cell 

volume. 

E. Analytical Application 

A calibration curve of the response of Electrode B to injected 

sample plugs containing V is shown in Figure VII-6. The concentration 

of I in the sample plugs ranged from 1.00 x 10 ̂  M to 5.00 x 10 M, 

and the corresponding peak currents, observed at the vibrating 

electrode ranged from 159 |JA to 138 pA. The supporting electrolyte in 

both the sample plugs and the carrier solution was 0.020 M HCl, made 

from a single bottle of Fisher analytical grade HCl and triply-distilled 

water (TDW). The flow rate was 0.632 mL min"^ for all injections. All 

sample plugs had a volume of 0.955 mL, and the vibrational parameters 

were identical to those employed in the previous section, f = 240.0 Hz, 

Re =66.5, and a = 0.481 mm. The electrode was maintained at a 
V pp 

potential of + 0.800 V vs. SCE. The experimental results were obtained 

over a period of 5 days, and triplicate injections were performed at 

each concentration level. Long-term variations in the electrode response, 

as evaluated from the daily variation in the peak current noted for 

multiple preliminary injections of 0.500 mM I~, were less than 1% 

relative. These preliminary injections also served to precondition the 

electrode prior to the actual analytical determinations. Peak currents 

observed following removal and reinsertion of the electrode into the 

cell were also reproducible within 1% relative, provided that the 
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Figure VII-6. Calibration curve for response of Electrode B in FIA to I" 

f = 240.0 Hz; Re^ = 66.5: a_ = 0.481 mm; vj = 0.632 mL min"^; V = 0.955 mL; C = 
5.00 X 10-10 to 1.00x10-3 0.020 M HCl; E^ = + 0.800 V vs. SCE. 

pi" = - log I"; Pipgak ~ ' (peak current). 

Equation of line; plgeak ~ (0.956 + O.OlDpl" + (0.878 + 0.071). Uncertainties 
calculated at 90% confidence intervals. 
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electrode did not touch the sides of the compartment. 

At all concentrations, the observed current peaks were similar in 

form to the peaks analyzed in the preceding section of this chapter. 

The peak currents, noted for triplicate injections were repro

ducible within 1% relative at all concentrations above 5.00 x 10 ̂  Ml". 

The relative variations noted for multiple injections at 1.00 x lO"^ M 

and 5.00 x 10 M I were 5% and 15%, respectively. Representative 

current peaks are illustrated in Figure VII-7; the response of the FIA 

system to an Injected plug of 0.020 M HCl containing no added I" is also 

shown. The slope of the log-log calibration curve shown in Figure VII-6 

is 0.956, with an uncertainty of + 0.011, calculated at the 90% confidence 

interval. 

The data shown in Figure VII-7 indicate that the detection limit 

for I in this system is approximately 5 x 10 M l", for a signal-to-

noise ratio of 2. This value is l/20th the value of 1 x 10 ̂  M cited by 

Blaedel and Boyer (159) for the tubular electrode. The Indicated dynamic 

range of the vibrating electrode in FIA, as demonstrated by these re

sults, is 2,000,000 to 1, or more than 6 decades of concentration. These 

results represent both the lowest detection limit and the greatest dy

namic range reported to date with electrochemical flow-through detectors. 

The only instances of lower detection limits reported in electroanalysis 

are those cited for differential pulse anodic stripping voltammetry, 

in which the sensitivity is greatly increased by virtue of the pre-

concentration of analyte inherent in the method. 

The slope of 0.956 for the log-log calibration curve shown in 

Figure VII-6 indicates that the current observed at the vibrating 
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Figure VII-7. Observed response of Electrode B to injected I 

A = 5.00 X 10"* M l" in 0.020 M HCl; 

B = 1.00 X 10"* M I" in 0.020 M HCl; 

C = 5.00 X 10"^° M I' in 0.020 M HCl; 

D C^ = 0 (blank, 0.020 M HCl). 

Experimental conditions shown in Figure VII-6. 
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electrode, in contrast to theory, is not strictly proportional to 

concentration. This same property was observed with the response of 

this and other electrodes to Og and I in the batch cell. Therefore, 

it is a property of the electrode and is not related to the use of 

the vibrating electrode in FIA. Similar nonlinear response was noted 

by Kuster (26) in the amperometric determination of 0^ at a vibrating 

electrode, and slight nonlinearity is evident in the calibration curves 

(Ip^ak " published by Harris and Lindsey for the reduction of Ig 

(20) and Br^ (21) at Pt vibrating electrodes. Because the nonlinearity 

is very slight, it is not evident in calibration curves - C^) 

covering concentration ranges of less than 1 decade and therefore may 

have been overlooked by other investigators. The reason for the non-

linearity is unknown. 

Tests of HMVE(AM) in the flow-through cell indicated that the 

detection limit for HMVE(AM) at 95% modulation in FIA is approximately 

-9 3 X 10 M, a value considerably higher than that demonstrated for DC 

ampercmetry at the vibrating electrode. The detection limit for HMVE(AM) 

was calculated from comparison of the noise level observed at high 

sensitivity to the signal level, observed for the injection of 

0,5 mM I~. The sole advantage of HMVE(AM) in FIA is that the value of 

AI^ decays to a constant value within less than 15 sec following any 

change of the potential of the electrode, as contrasted with the 

waiting period of up to 30 min required for the same electrode in DC 

amperometry. As noted in Chapter VI, HMVE(AM) discriminates against 

charging currents, which are the cause of the time-dependent background 

currents noted in DC amperometry. 
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The vibrating electrode was also applied to the determination of 

I in household iodized salt. Morton iodized salt was dried for 3 hr 

at 110 C and stored in a desiccator. A 2.4565-g sample of the dried 

salt was dissolved in 0.020 M HCl and diluted to volume in a 100-mL 

volumetric flask. From this stock solution, 5 5.00-mL aliquots were 

transferred to separate 100-mL volumetric flasks, and 5.00-mL, 10.00-mL, 

15.00-mL, and 20.00-mL aliquots of a 10.55-pM I splution were added to 

4 of these 5 flasks, respectively. All 5 flasks were then diluted to 

volume with 0.020 M HCl. These 5 solutions were then analyzed for l" 

using the flow system as described above. The results of triplicate 

injections were averaged to give the value of cited for each 

solution. These data and the equation of the least-squares line deter

mined by these points are given in Table VII-6. The absolute value of 

the X-intercept of this line, 0.449 + 0.066 ixM I , represents the 

concentration of 1 in the flask containing no standard addition. Ac

counting for the 1:20 dilution factor in the preparation of this solu

tion, this value is equivalent to 149 + 22 ng KI in the 2.4565-g sample, 

or 60.7 + 9.0 ppm KI. The uncertainties in these data were all calcu

lated at the 90% confidence interval. The comparatively large values 

for these uncertainties are a direct result of the nonlinearity in the 

electrode response, which was noted previously. The final result of 

60.7 +9.0 ppm KI compares to the value of 85 ppm KI quoted by the 

manufacturer (160). 

Small background currents were noted at the vibrating electrode in 

FIA. At a potential of + 0.750 V vs. SCE in the absence of adsorbed 

I", a constant anodic background current of 2.7 to 3.0 nA was observed 
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Table VII-6. Analysis of iodized salt^ 

Solution^ ' Added [I"] (iiM) 
:p«ak 

Sample 0.000 103 

1 0.527 241 

2 1.055 372 

3 1.582 500 

4 2.110 616 

= 240.0 Hz; RSy = 66.5; app = 0.481 mm; Vf = 0.632 mL min 
Electrode B; Vg = 0.955 mL; = + 0.800 V vs. SCE. 

^Number of standard additions. 

'^Equation of line determined by least-squares program: 

Ipgak = (243.6 ± 9.3)[I"] + (104.9 ± 12.0); 

x-intercept = (109.4 + 12.0)/(243.6 ± 9.3) = 0.449 ± 0.066 pM 

= [I"] in sample. 

All uncertainties calculated at 90% confidence intervals. 

^Average for triplicate injections. 
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at Electrode B in the flow-through cell at Vg = 0.632 mL min f = 

240.0 Hz, and Re^ = 66.5. At these same conditions but in the presence 

of adsorbed I", the corresponding background current was 1.2 nA. In

jection of deaerated 0.020 M HCl into a carrier stream of air-saturated 

0.020 M HCl failed to produce any measurable change in the observed 

current, thus showing that a cathodic contribution arising from the 

reduction of dissolved O2 was not present. These background currents 

displayed a significant dependence on the amplitude of vibration; re

duction of a from 0.481 mm to 0.120 mm caused an immediate change 
PP 

in the background current from 2.7 nA to 1.4 nA. The dependence on 

the flow rate was much smaller. The background currents observed in 

0.010 M HgSO^ were approximately 3 times larger than those observed in 

0.020 M HCl. From these data, it is not possible to ascertain whether 

the background currents arise from oxidation of impurities in the sup

porting electrolyte or from oxidation, i.e., corrosion, of the Pt 

electrode. However, experiments conducted at lower values of v^, 

1.e., higher values of c, should be able to distinguish between these 

alternatives. In such experiments, significant dependence of the back

ground current on v^ would indicate the presence of a contaminant in the 

supporting electrolyte. 

F. Conclusion 

Theoretical equations have been derived which describe the performance 

of the vibrating electrode in FIA for both steady-state conditions and 

plug injection of samples. These equations have been verified by experi-



www.manaraa.com

225 

mental studies, and the validity of the fundamental assumptions, upon 

which the equations are based, has been critically evaluated. It 

was found, that the mixing process in the flow-through cell is not actually 

instantaneous and does not cover the entire cell volume. However, the 

assumption of perfect, instantaneous mixing was shown to be valid for 

the lower portion of the cell. Dispersion of the trailing edge of the 

sample plug had a noticeable effect on the nature of the falling por

tion of the observed current peak. The value of the mass transport 

coefficient for the vibrating electrode, k^, was substantially the same 

for identical values of the vibrational parameters in both the batch 

and flow-through cells. Also, it was found to be independent of the 

value of Vg in the flow-through cell. It was therefore concluded that 

the reduced value of I^ observed in the flow-through cell resulted 

solely from the depletion of the concentration of analyte in the cell 

effected by the reaction at the electrode. 

The basic equations developed in this chapter have been shown to 

reduce to previously known equations for the limiting cases of 

Ak^ » v^, Vj »Ak^, Vg = 0, and t -> ». The applicability of the basic 

equations, developed for vibrating electrodes, to other systems, notably 

the RDE in FIA, has been evaluated. However, the data presented in the 

literature were not sufficient to permit quantitative calculations, al

though the equations derived in this work were shown to explain the 

qualitative deviations from the Levich equation, which were noted by 

the authors. 

The vibrating electrode has been applied to the determination of I 

by FIA. The method was found to possess the lowest detection limit and 
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largest dynamic range reported to date for a flow-through electro

chemical detector, 5 x 10 M and 6.3 decades of concentration, 

respectively. The reproducibility and reliability of the method were 

evaluated, and the technique was applied to the analysis of a real 

sample, iodized salt. The method was also employed in an investiga

tion of the background currents observed at amperometric electrodes. 

The applicability of HMVE(AM) to FIA was also Investigated. It was 

concluded that the sole advantage of HMVE(AM) in FIA is its ability 

to discriminate against charging currents, thus enabling the electrode 

to be used immediately following a change in the electrode potential. 
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VIII. ANODIC BEHAVIOR OF GOLD 

A. Literature 

The salient features of the residual voltanmogram obtained at Au 

electrodes in acidic, chloride-free media have been discussed by 

Bélanger and Vijh (86) and by Nicol (161). For voltammograms obtained 

in such media with voltage limits of + 1.50 V and 0.00 V vs. SCE, the 

authors noted a complex anodic wave commencing at + 1.10 V vs. SCE on 

the positive scan, corresponding to the oxidation of the Au surface to 

a monolayer of AugOg, and a single, sharp cathodic peak at + 0.90 V vs. 

SCE on the negative scan, corresponding to the reduction of this oxide 

to Au metal. During the negative scan of applied potential, the anodic 

current decreased approximately 50% at E^ = + 1.40 to + 1.50 V vs. SCE, 

relative to the value observed at E^ = + 1.20 to + 1.35 V vs. SCE. In 

addition, Nicol (161) noted that the potentials corresponding to the 

onset of oxidation of the Au metal and to the reduction of the oxide 

film both move 60 mV in a negative direction for each unit increase in 

the pH. 

Significant increases in the double-layer capacity of Au electrodes, 

based on the geometric surface area, were noted following more severe 

anodizatlon of the electrodes (162), In 2.0 M Na^SO^, the measured 

double-layer capacity of a Au electrode which had no prior history of 

electrochemical anodizatlon was 22.4 HF cm"^. Anodizatlon of this 

electrode at + 1.75 V vs. SCE for several minutes followed by electro

chemical reduction of the oxide layer increased the observed double-

layer capacity to final values of 131 to 300 liF cm"^, with the higher 
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values corresponding to longer periods of anodlzatlon. These Increases 

In the double-layer capacity were attributed to the formation of gold 

black and consequent roughening of the surface of the electrode, which 

greatly Increased Its electrochemical surface area. 

Rand and Woods (163) described the changes In appearance noted for 

Au electrodes during severe anodlzatlon and subsequent reduction of 

the resultant oxide film: 

"The process [anodlzatlon] forms a visible deep orange 
layer on the electrode surface which turns black on 
reduction: this layer Is phase oxide and Its forma
tion causes a severe roughening of the gold surface." 

These authors also conducted measurements of the quantities of charge, 

corresponding to the oxidation of the electrode surface. The 

value of obtained for anodlzatlon at + 1.62 V vs. SCE, prior to the 

formation of phase oxide, was 0.50 mcoul cm However, the value of 

measured for an anodlzatlon of 1000 sec at + 1.92 V vs. SCE, cor

responding to the formation of orange phase oxide, was 11.8 mcoul cm 

The authors concluded that this anodlzatlon Increased the roughness of 

the surface of the electrode by a factor of 20. 

Frankenthal and Thompson (164) conducted Investigations of the 

film of oxide formed at Au electrodes under conditions of severe 

anodlzatlon. By means of Interrelated gravimetric measurements, they 

established that the formula of the oxide forming the film was Au(OH)g 

and not AugO^. The data were also used to calculate the current 

densities corresponding to formation of the oxide film, under the as

sumption that the film contained only Au(III). The results of these 

calculations Indicated that film growth In excess of 1 monolayer of 
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oxide occurred only at potentials greater than + 1.75 V vs. SCE In 1.0 

M HgSO^. Frankenthal and Thompson also studied the effects of trace 

Cl' on the anodic behavior of Au. They observed that the anodic cur

rents occurring at potentials between + 1.10 V and + 1.40 V vs. SCE were 

greatly Increased In the presence of Cl" at concentrations of 1 and 

10 mM. In addition, they noted that the onset of the anodic wave oc

curred at potentials as low as + 0.85 V vs. SCE In the presence of Cl'. 

B. Experimental Results 

The experimental evidence gathered In this research supported the 

conclusions reported In the literature. These studies were conducted 

with vibrating electrodes made from Au wire with no prior history of 

electrochemical anodlzation. Residual voltammograms were obtained 

at voltage limits of + 1.70 V and + 0.20 V vs. SCE. Extended anodlza

tion of such electrodes at potentials greater than + 1.75 V vs. SCE in 

1.0 M HgSO^ changed the surface of the Au electrode from the charac

teristic yellow, metallic color to a duller, red-orange color, presumably 

owing to the formation of phase oxide. Following this anodlzation, the 

appearance of the electrode changed radically during the course of a 

scan of applied potential initiated at the potential of anodlzation, 

+ 1.8 to + 2.0 V vs. SCE, and terminated at 0.00 V vs. SCE. The red-

orange color noted during anodlzation persisted until the potential of 

the electrode reached the value corresponding to the reduction of the 

oxide layer, ça. + 0.90 V vs. SCE. At this point, the color of the 

electrode changed through a fleeting, lighter stage to a uniform black 
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color, which persisted at potentials more negative than + 0.90 V vs. SCE. 

In contrast to the single, sharp peak noted in the normal voltammogram, 

the cathodic reduction peak obtained following severe anodlzation was 

much broader and displayed fragmentation into minor peaks on the posi

tive side of the main peak, as noted previously by Rand and Woods (163). 

With respect to the present research, the most important change re

sulting from severe anodization of these Au electrodes was the tremendous 

increase in the magnitude of the residual currents noted subsequent to 

such anodization and reduction of the surface oxide. The residual cur

rents noted in the voltammograms of a given Au electrode in 1.0 M H^SO^, 

following anodization at potentials in excess of + 1.75 V vs. SCE, were 

approximately 10 times greater than the corresponding currents observed 

in the voltammogram of the same electrode prior to its first severe 

anodization. However, the overall features of the 2 voltammograms were 

identical. Anodization of Au electrodes at potentials of + 1.70 V vs. 

SCE or less for periods of up to 24 hr did not change the magnitude of 

the observed residual currents. 

In contrast to the ten-fold increase in the magnitude of the 

residual currents observed subsequent to severe anodization, the magni

tude of mass-transport controlled currents, such as the reduction of 

Or2©^ at + 0.30 V vs. SCE, remained unchanged following anodization of 

these Au electrodes. 

The above observations are consistent with a ten-fold increase in 

the microscopic surface area of the electrode resulting from the anodiza

tion, since the surface-controlled currents observed in the residual 

voltammograms are directly proportional to the microscopic surface 
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area of the electrode. Although mass-transport controlled currents are 

also related to the area of the electrode (see Equation 1-6), micro

scopic roughening of the electrode does not affect the flux of electro-

active species to the electrode. This is because the thickness of the 

diffusion layer, typically 4 I4n for a vibrating electrode, is much 

greater than the dimensions associated with surface roughening. Hence, 

the area of the electrode, as "seen" by the diffusing ions, remains un

changed following anodization. 

Residual voltammograms of Au obtained in 1,0 M H^SO^ and 2.0 M HNO^ 

were identical in form. However, the anodic wave in the residual volt-

ammogram was found to be highly sensitive to the presence of CI ions. 

This observation is in agreement with previous work (164). 

In preparation for the determinations of Hg described in the fol

lowing chapter, the rest potentials of Electrode E were obtained under 

conditions of zero current in both air-saturated 1.0 M HgSO^ and 2.0 M 

HNO^. This measurement was performed by disconnecting the counter 

electrode from the potentiostat at a chosen potential, during the 

recording of the residual voltammogram and allowing the working elec

trode to drift to a constant potential. This rest potential was then 

measured at the voltage output of the potentiostat. In both H^SO^ 

and HNO^, the rest potentials measured at values of E^^^ from 0.00 to 

1.10 V vs. SCE, corresponding to a reduced Au surface, were + 0.45 + 

0.02 V vs. SCE, and the rest potentials measured at values of E,. 
dis 

from 1.5 to 1.7 V vs. SCE, corresponding to an oxidized Au surface, 

were + 1.06 + 0.01 V vs. SCE. Repetition of these experiments in a 

solution containing 0.05% KMnO^ in 1.0 M H^SO^ indicated that the rest 
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potentials obtained in this solution were + 1.26 + 0.01 V vs. SCE, re

gardless of the value of From these experiments, it was concluded 

that electrodeposited Hg, which is stripped from a Au electrode at 

E^ = + 0.9 V vs. SCE, could not be chemically stripped from the elec

trode under open-circuit conditions in air-saturated HgSO^ or HNO^, but 

that it would be chemically stripped in acidic media containing KMnO^. 

C. Conclusion 

Anodization of Au electrodes in H^SO^ and HNO^ at potentials greater 

than + 1.75 V vs. SCE causes severe microscopic roughening of the Au 

surface. This surface roughening increases the residual, or background, 

currents observed at Au electrodes without producing corresponding in

creases in the currents associated with mass-transport limited reactions, 

such as the reduction of Hg(II). As a result, the detection limit for 

the voltammetric determination of species which react at a mass-transport 

limited rate at Au electrodes is degraded significantly by severe 

anodization, and optimum detection limits are expected for electrodes 

with no prior history of electrochemical anodization at potentials above 

+ 1.75 V vs. SCE. 

Studies of the rest potentials of Au electrodes at conditions of 

zero current indicate that air-saturated HgSO^ or HNO^ will not 

chemically strip electrodeposited Hg from the electrode. However, Hg 

will be chemically stripped from Au electrodes in acidic solutions of 

KMnO^. 
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IX. DETERMINATION OF MERCURY IN LAKE SUPERIOR WATER 

A. Introduction 

The application of vibrating Au electrodes to the determination of 

Hg at ultratrace levels in Lake Superior water (LSW) is described in 

this chapter. The method as presented here is applicable to aqueous 

samples containing Hg(II) at part per trillion (pptr) levels. The 

sensitivity and detection limit for this method are compared to those 

attainable with cold-vapor atomic absorption spectroscopy (AAS) (165), 

the accepted method for the determination of Hg at trace levels. 

Problems associated with contamination of reagents and with loss of 

analyte from the samples are also discussed. 

Numerous analytical methods have been developed in recent years 

for the determination of Hg at trace concentrations, primarily as a 

result of justified concern for the effects of trace Hg in the environ

ment. The reader is referred to the 1978 report by the Panel on Mercury 

of the National Academy of Sciences (USA) (166) for an in-depth review 

of the environmental, toxicological, and analytical aspects of Hg at 

trace levels. Analytical methods for the determination of Hg have 

also been reviewed by Allen (167). 

The electrochemical method employed in this research for the 

determination of Hg is based on the method developed by Allen (167) and 

by Andrews, et al. (168), and refined by Lindstrom (148). In the first 

phase of the procedure, the mercury, present as Hg(II) in LSW, is electro-

chemically deposited onto the vibrating Au electrode. In the second 

phase, the electrode is transferred to a 1 M H^SO^ solution prepared 
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with triply distilled water (TDW), where the deposited Hg atoms are 

stripped from the electrode using differential pulse anodic stripping 

voltammetry (DPASV). These 2 portions of the procedure are referred to 

as the "deposition phase" and the "stripping phase," respectively. The 

extreme sensitivity afforded using this technique is a result of 3 

factors. First, the vibration of the electrode during the deposition 

phase results in an extremely high rate of mass transport to the surface 

of the electrode. This means that a larger quantity of Hg(II) is de

posited from a solution of a given concentration onto the vibrating 

electrode than would be deposited from the same solution onto a tubular 

electrode or a RDE of the same area, when applied under the normal 

conditions of convective mass transport. The analytical signal, which 

results from the reoxidation of these deposited Hg atoms, is proportional 

to the number of deposited atoms. A larger analytical signal is thus 

obtained at the vibrating electrode. 

The second factor resulting in increased sensitivity for this 

method is the preconcentration of analyte, which is characteristic of 

anodic stripping voltammetry. The Hg atoms are deposited onto the 

electrode over a comparatively long period, 600 sec, and are stripped 

from the electrode during a single scan of applied potential. The long 

period of preconcentration increases the quantity of deposited Hg and, 

consequently, increases the analytical signal obtained for a given 

concentration of Hg(II) in the sample. 

The third factor, which decreases the detection limit obtained 

with this method, is the use of DPASV in the stripping phase. To a 

great extent, DPASV discriminates against the nonfaradaic current 
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associated with the charging of the double layer at the surface of the 

electrode during the scan of applied potential. This charging current 

constitutes a significant source of unwanted background signal In 

linear-sweep stripping voltammetry. In which the potential applied to 

the electrode Increases linearly with time. Since the use of DPASV 

decreases the value of this charging current relative to the analytical 

signal, the detection limit for the determination of Hg by this proce

dure Is decreased. 

The positive potential employed In the deposition, + 0.45 V vs. 

SCE, results In a high degree of selectivity for Hg relative to other 

electroactive species. The only species which Interferes seriously 

with the determination of Hg(II) in this procedure is Ag(I). Ag(I) 

does not interefere unless present at a concentration greater than 100 

times the concentration of Hg(II). The deposition of Hg occurs at a 

potential which is 50 mV more positive than the reversible thermodynamic 

potential for the Hg(II)/Hg(0) couple in this medium and is consequently 

referred to as "underpotentlal deposition." At the concentration levels 

employed in this determination, Hg is deposited at quantities less than 

1 monolayer. Under these conditions, the deposited Hg is stripped at 

a potential of + 0.90 V vs. SCE, forming Hg(II). A single, sharp 

stripping peak is observed at this potential (148, 167). 

B. Engineering and Instrumentation 

The analyses for Hg were conducted with Electrodes E and F, which 

were constructed, mounted, and operated as described in Chapter 111. 
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The electronic instrumentation used to drive the speaker has been 

described in Section G of Chapter IV. Potential control and current 

measurement for the vibrating electrode were performed with the model 

174A Polarographic Analyzer, manufactured by Princeton Applied Re

search (PAR), Princeton, NJ. The PAR 174A was modified according to the 

procedure given by Lindstrom (p. 112 of 148), to permit the operation of 

the instrument at periods of 0 to 0,5 sec for the differential pulse 

waveform, which was employed during the stripping analysis. 

A transfer apparatus was constructed to facilitate the transfer of 

the Au electrode from the cell containing LSW to the cell containing 

TDW. This transfer apparatus consisted of a 5-3/4 x 2-5/8 x 1-in. 

stainless steel tray, a plastic insert with inside dimensions of 4-1/8 x 

2-3/8 X 2 in., and 2 mounting brackets. The mounting brackets were 

attached to the sides of the speaker support, described in Section C 

of Chapter III, with the bottom edge of each bracket parallel to the 

base of the speaker support. Each of the mounting brackets was 

constructed from 14-gauge A1 sheet and was provided with 3 slots, 

3/16 in. in width and 1-5/16 in. in height. The slots were perpendicular 

to the bottom edges of the brackets and were spaced 1-1/8 in. apart. 

The plastic insert fit snugly into the tray and was designed to hold 2 

glass cells, constructed as described in Section F of Chapter III, such 

that the central compartments of the 2 cells were adjacent to each 

other, with each cell centered with respect to the longest dimension of 

the steel tray. A pair of 3/16-in. diameter steel rods, 1 in. in length, 

was soldered to each of the 2-3/8-in. sides of the tray, with the 2 rods 

centered 3/4 in. from either edge of the tray and 1/2 in. above the 
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bottom. These pairs of rods fit into the mating slots in the mounting 

brackets and supported the tray in either a forward or a rear posi

tion, such that the vibrating electrode was immersed in the corresponding 

cell. In the forward position, the 2 rods on each side of the tray fit 

into the foremost 2 of the 3 slots; in the rear position, the rods fit 

into the rearmost 2 slots. The upper end of each slot was provided with 

a recess, into which the corresponding steel rod could be placed. The 

positions of the 3 slots on the mounting brackets were located such 

that the Au electrode was centered in the corresponding cell in both 

the forward and rear positions of the tray, with the rods placed in these 

recesses. 

The speaker support, vibrating electrode, cells, and transfer ap

paratus were all placed within a 8-1/2 x 8-1/2 x 14-in. plastic box, 

the front cover of which was hinged to permit access to the trans

fer apparatus. This box served to minimize contamination of the 

electrode and solutions during analysis and also reduced the acoustical 

noise level produced in the laboratory. Due to the contamination of 

the cell solutions with mercury and/or CI from the SCE, isolation of 

the SCE from the cell was found to be necessary in ultratrace determina

tions of Hg at Au electrodes. This isolation was effected by means of 

a Luggin capillary made from a 1-mm bore stopcock. Each arm of this 

stopcock was bent 90 deg such that the outermost 6 cm lengths of the 

2 arms were parallel. When the stopcock was closed and both arms were 

filled with 1 M H^SO^, ionic conductivity was provided between the 

reference sidearm of the cell and a 50-mL beaker placed at the rear 

of the box. The SCE was placed into this beaker, which was partially 
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filled with 1 M H^SO^. A dual Pt counter electrode was immersed into 

the CE sidearms of the 2 cells and was connected to the CE connection 

on the PAR 174A. With the Luggin capillary positioned as described in 

the following section, both the Au working electrode and the reference 

electrode were simultaneously and automatically switched from one cell 

to the other by changing the position of the tray from the forward to 

the rear position or vice versa. Since the arm of the Luggin capillary 

remained in the sidearm of the cell longer than the Au electrode re

mained in the central compartment, saturation of the potentiostat could 

not occur during the period that the Au electrode was immersed in the 

solution. Hence, damage to the Au electrode by severe anodization was 

not possible. This procedure also avoided the need for a second Luggin 

capillary and SCE, and it eliminated the DPDT switch which normally 

would be required in a dual-cell experiment. 

The initial potential, + 1.700 V, and scan direction. Negative, 

employed with the PAR 174A in this experiment were chosen to minimize 

the possibility of damage to the electrode through carelessness on the 

part of the operator. With these controls set as shown, it was im

possible to expose the electrode to potentials greater than + 1.700 V 

vs. SCE. 

C. Procedure 

The step-by-step procedure employed in the analyses of LSW is given 

below: 

1) Place the speaker and its mount in the plastic enclosure, with 
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the cone and protruding wire facing the front. The base will fit into 

the limiting stops on the plastic box. The connection to the speaker 

(terminated in a 1/4-in. phone plug) should come out through the rear 

hole. 

2) Carefully mount one of the vibrating electrodes (in its Cu 

holder) onto the speaker by using brass hardware (supplied), using 1 

nut and bolt for each of the 4 holes in the vertical aluminum strip, 

3) Put the signal generator and amplifier on top of the PAR 174A. 

Connect the signal generator to the amplifier (either amplifier input — 

they are connected in parallel, as supplied) with the probe which 

terminates in banana plugs and an RCA phono plug. The black and red 

banana plugs should be plugged into the correspondingly colored jacks 

on the generator. Plug the speaker connector (1/4-in. phone plug) 

into the desired channel output (1 or 2) on the amplifier. Connect 

the cell probe to the PAR 174A and clip the 4 alligator clips to the 3 

banana plugs (bare metal) and the frame of the speaker mount (right 

bracket), as follows: Red (CE) to red jack; White (Ref.) to white jack; 

Blue (WE) to blue jack; black alligator clip through front hole in 

plastic box to speaker mount. All instruments should be off at this 

time. 

4) Fill the 2 glass cells; one with the sample solution (LSW 

made 1.0 M in H^SO^) and the other with 1 M H^SO^ in TDW. The sidearms 

of both cells should also be filled (to approximately 1 cm from the top) 

with 1 M H^SO^. Place the 2 cells into one of the plastic trays. Put 

the plastic tray into the stainless steel cell holder. Holding the 2 

sides of the stainless steel tray with the hands, outside of the mounting 
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brackets, lift the tray in the forward position (rods in the 2 forward 

slots) straight up and level until it can be moved backwards and into 

the recesses provided for holding the tray. The vibrating electrode 

should now be immersed in the 1 M HgSO^ solution, with the seal at 

least 3 mm below the surface. 

5) Add 25 mL of 1 M H^SO^ to a 50-mL beaker, and place the beaker 

on a wooden block (supplied) in the right rear corner of the plastic 

enclosures. Make certain that the block is not sitting on this speaker 

lead. Place the SCE (reference electrode) into this beaker. 

6) Fill a reference bridge (Luggin capillary) with 1 M HgSO^ 

completely, making certain that there are no bubbles in either arm. 

The stopcock should be in the open position during the filling process. 

After filling both arms completely, turn the stopcock 90 deg and care

fully invert the entire assembly. Place the 2 ends of the reference 

electrode bridge into the 50-mL beaker and the right sidearm of the 

rear cell. Check carefully for bubbles in the bridge; repeat this 

procedure as necessary until no bubbles are observed in the bridge as 

finally installed. Brace the bridge in a vertical position with the 

grounding (black) alligator clip of the PAR 174A cell probe. 

7) Insert the counter electrode into the 2 left sidearms of the 

2 cells. The 2 helical portions of the counter electrode should be 

immersed in the solution of each sidearm. 

8) Set the signal generator to 1 output (fine attenuation 

control at maximum clockwise position). Set the frequency to 210 Hz. 

Turn both Channel switches on the amplifier to the Off position (down). 

Turn the signal generator on; then turn the amplifier on (rocker switch 



www.manaraa.com

241 

on generator; Power switch on amplifier). Momentarily turn the Channel 

switch on the amplifier to the on (up) position and adjust the cor

responding Level control such that as measured across the speaker 

terminals with the digital voltmeter (DVM) on the 20 V AC range, is 

equal to 3.00 V RMS, The electrode should vibrate at about 1.3 mm 

peak-to-peak, and a 210 Hz tone should be heard. Following this ad

justment, return the Channel switch to the Off position. 

9) Set the PAR 174A controls as follows, with the Power switch 

Off. 

Rate: 100 mV sec ^ 

Direction: 

Range: 1.5 V 

Initial Potential; + 1.700 V 

Modulation Amplitude: 100 mV 

Initial Button: depressed 

Operating Mode : DC 

Selector: Off 

Current Range: 1 mA 

Output Offset: - , 0.000 V 

Display Direction: + 

Clock: 0-0.5 sec. position 

50 msec/turn potentiometer: 2.58 turns 

Low Pass Filter: Off. 

10) Connect the PAR 174A to the X-Y recorder; preferably such that 

the current (Y on PAR 174A) axis is on the longer axis of the chart 

paper (usually X axis on recorder). Set both axes' sensitivities to 
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100 mV in."^ or 100 mV cm ^ (depending on chart size). The voltage 

axis may need to be set to 150 mV in, ^ (or cm) to fit a 1.5 V range 

onto the paper. Connect the DVM across the X-axis output of the 

PAR 174A (DVM on 2 V DC range). 

11) Turn the Power switch on the PAR 174A to the On position. 

Then turn the X-Y recorder on. This prevents transients from the PAR 

174A from possibly damaging the recorder. 

12) Turn the Selector switch on the PAR 174A to the Ext, Cell 

position. The X-Y recorder may go temporarily off scale, but should 

return within 5 sec to a value on scale. If not, switch the Selector 

switch on the PAR 174A to the Off position and check all connections 

and control settings. Also check the reference electrode for low KCl 

level and the reference electrode bridge for bubbles. 

This completes the preliminary setup and alignment for analysis. 

Having completed the preliminary setup and alignment, the apparatus 

is now set for actual analytical measurements. The procedure is 

given below. 

13) Scan the Au electrode over the range of +1.7 to +0.2 V 

vs. SCE by alternately depressing the Scan and Scan Rev. button on 

the PAR 174A. Repeat this procedure until a reproducible residual 

voltammogram for Au is obtained. Adjust the Current Range switch on 

the PAR 174A and/or the recorder sensitivity to keep the residual curve 

to scale if necessary. The electrode should be vibrating (amplifier 

Channel switch for appropriate channel in On (up) position) during 

this step. 



www.manaraa.com

243 

Note: Au tends to absorb Hg from the air If stored for long 

periods. The absorbed Hg will show up on the stripping curve as a peak 

which Is undistlngulshable from the stripping peak obtained from Hg 

deposited from solution. The electrode may be cleaned of such absorbed 

Hg by repeated cycling and anodlzatlon at + 1.700 V vs. SCE (Initial 

button depressed for anodlzatlon), with the electrode vibrating. 

The cell solution should be changed prior to performing analyses, 

after this cleaning procedure is performed. 

14) With the Initial button on the PAR 174A depressed (electrode at 

+ 1.7 V vs. SCE) and the electrode stationary (Channel switch on ampli

fier in Off (down) position), transfer the electrode to the sample cell 

by lowering the electrode tray and setting the tray on the aluminum 

base, sliding the tray with cells backwards for 1-1/8 in. until the 

2 rods on each side are directly below the rearmost 2 slots in the side 

supports, and lifting the tray upwards (levell) until the rods can be 

lowered into the rear holding position. The Au mlcroelectrode should 

now be Immersed in the sample (front) solution, with the seal 3 mm below 

the surface of the solution. The reference electrode bridge should 

contact the solution in the sidearm of the sample cell prior to the Au 

electrode coming into contact with the sample solution. Otherwise 

the electrode may be ruined by anodlzatlon, as described in Chapter VIII. 

15) Switch the Channel switch on the amplifier to the On (up) 

position (electrode vibrating). Cycle the electrode twice over the 

range + 1.7 to + 0.2 V vs. SCE. At the beginning portion of the third 

cathodic scan, press the Hold button on the PAR 174A to stop the cathodlc 

scan at a point as close to + 0.450 V vs. SCE (indicated on the DVM as 
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+ 1.250 V) as possible. The initial DVM reading should be 1.240 to 

1.265 V. As soon as the Hold button is depressed, switch the Operating 

Mode switch on the PAR 174A from the DC position to the Diff. Pulse 

position (far right). The Overload light on the PAR 174A may light up 

for a period, but should go out within 10 sec. Simultaneously with 

switching the Operating Mode switch, start a stopwatch to time the 

deposition period, t^^^. Also, after switching to Diff. Pulse mode and 

starting the stopwatch, switch the Current Range switch to 0.02 mA or 

0.05 mA. The entire procedure should be completed, from stopping the 

scan to final setting of the Current Range, within 10 to 15 sec. 

Continue the deposition for 600 sec. During the deposition, switch the 

Scan Rate switch on the PAR 174A from 100 mV sec ^ to 20 mV sec The 

deposition voltage may normally be corrected to exactly + 0.450 V vs. 

SCE (DVM reading + 1.250 V) by juggling the Hold, Scan, and Scan Rev. 

buttons to shift the Hold potential (indicated on DVM) to 1.250 + 

0.002 V. 

16) When the stopwatch reaches 10 min 0.0 sec, switch the Channel 

switch on the amplifier to the Off (down) position. The electrode will 

be stationary. Lower the transfer tray and slide it 1-1/8 in. forward 

on the aluminum base. Raise the tray (level!) so that the electrode is 

now immersed, as before, in the stripping cell. Important: Observe 

the same precautions noted in step 14 of this procedure. The reference 

bridge, after this second transfer, should again be in the right 

sidearm of the stripping (rear) cell. 

17) Switch the Channel switch on the amplifier twice for 2 sec 

each time. This mixes any transferred solution into the bulk of the 
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solution in the stripping cell. Be certain that the electrode is 

stationary before proceeding. 

18) Lower the recorder pen on the X-Y recorder and press the 

Scan Rev. button on the PAR 174A. The stripping scan is now being re

corded. It may be necessary to adjust the Offset knob on the PAR 174A 

to ensure that the stripping peak for Hg is on scale. The correct 

position for the Offset knob and best procedure for adjustment (which 

must be performed during the stripping scan) are determined empirically 

and by practice. 

19) Raise the recorder pen at the onset of the oxidation wave for 

Au (recorder pen will go off scale and Overload light may light on 

PAR 174A). Turn the Current Sens, switch to the 1 mA position and 

turn the Offset switch to the Off position. Switch the Scan Rate switch 

to 100 mV/sec and the Operating Mode switch to the DC position. Switch 

the Channel switch on the amplifier to the On (up) position; the 

electrode will again be vibrating. 

20) Cycle the electrode again as described in step 13 above until 

a reproducible DC residual voltammogram is obtained. Usually 2 or 3 

scans will be sufficient. 

2+ 21) Add an appropriate amount of a freshly prepared standard Hg 

solution (20 to 50 |i.L typically) to the sample (front) cell using a 

glass micropipette. If the pipette is calibrated to contain, rinse the 

pipette with the cell solution 3 times to ensure quantitative transfer. 

Stir the sample cell with a small glass stirring rod. 

22) Repeat steps 13 through 20 for each standard addition, fol

lowed by addition of the next aliquot of standard Hg^ solution 



www.manaraa.com

246 

as per step 21. 

23) Determine the peak differential stripping current, 

obtained for each addition and for the sample solution using the de

sired procedure from the 2 described in the following section. 

24) Make a standard plot and determine the concentration, of Hg 

in the sample solution. 

Between analyses, the Au electrodes were stored with the active 

Au surface immersed in TDW. This reduced absorption of Hg from the 

air onto the electrode, a process which has been noted both in this 

work and in the literature (169). 

D. Experimental Results 

Determinations of Hg(II) by DPASV were performed on a LSW sample 

and also following each of 8 successive standard additions of SO.O-pL 

- 7  
aliquots containing freshly prepared 2.07 x 10 M Hg(II) to the 28.5-mL 

LSW sample. The stripping voltammograms were obtained at Electrode F 

in accordance with the procedure detailed in the preceding section. 

From these representative voltammograms, those obtained for the LSW 

sample and for LSW with 1.47 nM (294 pptr) added Hg(II) are depicted in 

Figure IX-1. Residual voltammograms of Au in 1.0 M H^SO^ made using 

TDW and LSW are shown for reference, and the voltammogram for the 

preliminary determination of Hg(II) in the solution containing 1.0 M 

HgSO^ in TDW, which was employed in the stripping cell, is also il

lustrated. In this latter determination, the deposition and stripping 

phases were both performed in the stripping cell, and the procedural 
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Figure IX-1. Representative voltammograms for the determination of Hg 
in Lake Superior water by DPASV 

A — Residual voltammogram of Electrode F in TDW blank; B — 
Residual voltammogram of Electrode F in LSW sample; C — 
DPASV of TDW blank (1.0 M HgSO^ in TDW); D - DPASV of LSW 
sample (1,0 M H2SO4 in LSW); E — DPASV of LSW sample plus 
1.47 nM Hg(II) (294 pptr). 

DC and differential pulse voltammograms depicted by broken 
and solid lines, respectively. Geometric constructions for 
determination of peak height by horizontal and sloping base
line methods shown for voltammogram C (F — horizontal base
line; G — sloping baseline). 

Voltammograms C, D, E vertically offset for clarity. 

Electrode F; f = 210 Hz; Re = 152; a =1.28 mm. 
V PP 

DPASV parameters: Scan rate = 20 mV sec ; Modulation 
amplitude = 100 mV; Period of DPASV waveform = 0.129 sec. 

t, = 600 sec. 
dep 

Scan rate for DC voltammograms = 100 mV sec 
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steps pertaining to the transfer of the electrode were deleted. The 

peak noted at + 0.575 V vs. SCE in the stripping voltammograms is charac

teristic of Au electrodes and is not indicative of an impurity in the 

solution nor of a leaky Au electrode. The altered form of the oxidation 

wave noted in the residual voltammogram recorded in the LSW sample is 

likely due to the presence of trace Cl'. 

The stripping cell and Luggin capillary were both filled with 1.0 

M HgSO^, which was made up from TDW and from a freshly opened bottle of 

Ultrex^ grade H^SO^, purchased from the J. T. Baker Chemical Co., 

Phillipsburg, NJ. This solution, hereafter referred to as the "TDW 

blank," was stored in a 2-L volumetric flask which had previously been 

employed exclusively for the storage of 1.0 M H^SO^ free from Hg. All 

glassware was rinsed thoroughly with TDW and with the TDW blank solution 

prior to the experiment. The cells had no prior history of exposure to 

solutions containing Hg. 

The observed values of AI .. for the 10 determinations are sum-strip 

marized in Table IX-1. For each voltammogram, was calculated by 

means of 2 different techniques. In the first technique, ^^g^rip was 

measured from a horizontal tangent to the top of the stripping peak for 

Hg down to a horizontal tangent to the minimum value of the differential 

current, observed on the positive side of the Hg peak, prior to 

the onset of the wave for Au oxidation. 

In the second technique, AI was measured from a sloping SuiTjLp 

tangent to the 2 minima located on each side of the stripping peak for 

Hg. The greatest difference noted along a vertical line from the peak 

down to the point directly below, on the sloping tangent, was taken as 
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Table IX-1. Calibration curves for Hg(II) at Electrode F: ^Igtrip 
concentration of Hg(II) in Lake Superior water* 

Added He(II) -
(nM)b,c (pptr) 

' • Horiz. baseline 

^strip 

Sloping baseline 

^strip = 

TDW blank 0.610 1.04 

LSW sample 
d 

n.a. 0.295 

0.367 73.6 0,215 0.755 

0.733 147 0.830 1.41 

1.10 221 1.36 1.99 

1.47 294 2.00 2.62 

1.83 368 2.58 3.15 

2.20 441 3.11 3.71 

2.57 515 3.69 4.30 

2.93 588 4.26 4.84 

Experimental conditions and representative voltammograms given in 
Figure IX-1. All uncertainties calculated at the 90% confidence inter
val. 

^Equation of line: 

Algtrip " 1-574 + 0.008)[Hg(II)] - (0.343 + 0.016) 

^Equation of line: 

Algtrip " (1-572 ± 0.026)[Hg(II)] + (0.257 ± 0.046) 

x-intercept = (0.257 + 0.046)/(1.572 + 0.026) 

= 0.163 + 0.032 nM Hg(II) in LSW sample, 

^n.a. = not applicable. 
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Al^trip* 2 techniques were designated as the "horizontal base

line" and "sloping baseline" methods, respectively. The horizontal base

line method is easier to use and produces calibration curves of greater 

linearity, but it is not applicable to voltammograms in which the required 

minimum between the stripping peak for Hg and the wave for Au oxidation 

is absent, e.g., in the LSW blank. In addition, the horizontal baseline 

method is not suited to the determination of Hg by the method of standard 

additions, because a portion of the peak is "lost" in the measurement 

procedure. The sloping baseline method yields slightly less precise 

calibration curves, but it is the only applicable method for cases in 

which the horizontal tangents required for the former method are not 

defined. The sloping baseline technique is also better suited to the 

determination of Hg by the method of standard additions, because the 

measurement results in a better approximation of the peak height. 

In Figure IX-1, the stripping peak for Hg depicted for the TDW 

blank corresponds to a Hg(II) concentration of 0.67 nM in the solution. 

This value is equivalent to a concentration of 1.3 parts per billion (ppb) 

in the Ultrex® H^SO^, assuming that the Hg(II) originated solely from 

the HgSO^. However, this background value was observed to vary widely 

from experiment to experiment, even when using the same solution of 

1.0 M HgSO^ prepared from TDW in the stripping cell. The observed 

stripping peaks indicated the presence of Hg(II) at concentrations of 

0.2 to 0.7 nM (20 to 140 pptr) in the 1.0 M H^SO^ solution employed in 

the stripping cell. These concentrations corresponded to Hg(II) levels 

from 0.4 to 1.4 ppb (w/w) in the Ultres^ acid. In addition, repeated 

analyses of a single aliquot of this solution generally produced 
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stripping peaks of increasing height for successive determinations, 

indicating that the concentration of Hg(II) was Increasing with time. 

Isolation of the SCE from the cell, using the Luggin capillary as 

described above, reduced but did not totally eliminate this latter 

problem. Repetition of the experiment under identical conditions, but 

with the Au electrode held stationary during the deposition step, 

decreased the height of the stripping peak for Hg by a factor of 20. 

This result indicated that the deposition of Hg was mass-transport 

dependent, thus proving that the Hg originated from the solution and not 

from the electrode. 

Although the concentration of 1.3 ppb Hg(II) calculated for the 
(|K 

Ultrex^ HgSO^ agrees well with the label value of 1 ppb, the variability 

of peak heights observed in separate aliquots taken from the same solu

tion indicates that the Hg contamination arose in great part not from 

the Ultrex^ H^SO^, nor from the TDW, but rather from external sources. 

The most likely sources of this contamination were adsorbed Hg on the 

walls of the glassware or Hg vapor in the laboratory. However, the cells 

and glassware had no prior history of exposure to solutions containing 

Hg, and experiments performed with the same apparatus at the laboratory 

of the U.S. Environmental Protection Administration in Duluth, MN, 

yielded similar background concentrations. In these latter experiments, 

the phenomenon of increased levels of Hg in successive analyses of a 

single aliquot of solution was also observed. From these results, it 

was not possible to localize definitively the source of the Hg contamina

tion. The background levels of Hg(II) observed in this work were of 

comparable magnitude and showed similar variations to the values measured 
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by Glass and Sandberg (170) in LSW samples, using an optimized version 

of the cold-vapor AAS technique and acids of equal purity. 

Analyses of 1.0 M H^SO^ solutions made from TDW and from analytical-

grade HgSO^ manufactured by J. T. Baker Chemical Co., Fisher Scientific 

Co., Fair Lawn, NJ, and by Mallinckrodt, Inc., Paris, KY, indicated 

that the Mallinckrodt acid contained the lowest concentration of Hg, 

comparable to J. T. Baker Ultrex^ acid, 'ollowed by J. T. Baker 

analytical-grade and Fisher H^SO^, both with considerably higher values. 

These relative levels were estimated from of the Hg stripping 

peaks noted for the first determination of Hg(II) in a freshly prepared 

solution, in which the possibility of contamination was at a minimum. 

The concentration of standard solutions containing Hg(II) at levels 

at or below 1 |JM was observed to decrease significantly following storage 

for extended periods. The height of the Hg stripping peak obtained in 

a 1.8 nM Hg(II) solution In LSW prepared from a standard solution con

taining 1.045 |JM Hg(II) decreased 30% upon storage of the 1.045-IJM 

solution for 24 hours. A 75% decrease was noted for 1.0 nM Hg(II) upon 

storage for 48 hours. Similar results have been noted in the litera

ture (171, 172), and the use of KMnO^ and K^CrgOy as preservatives for 

dilute solutions of Hg(II) has been suggested. In this work, the 

presence of K^CrgOy in the LSW was found to interfere with the deposi

tion of Hg onto the electrode. However, the presence of 18 ppm KMnO^ 

did not affect the deposition of Hg. Chemical stripping of the deposited 

Hg was not observed, in contrast to the prediction stated in Chapter 

VIII. Possibly the small quantity of solution which adhered to the 

electrode during the transfer process, together with the short period 



www.manaraa.com

254 

of exposure to this solution at open-circuit conditions and the low 

concentration of KMnO^, mitigated against the chemical stripping of 

the electrode. However, in view of the results cited in Chapter VIII, 

caution is advised in the use of KMnO^ as a preservative in samples 

to be analyzed by this electrochemical method. 

Experiments conducted with LSW containing added Hg(II) at a level 

of 1.3 riM (260 pptr) indicated that the LSW apparently contained a 

species which complexed or chelated the Hg(II) at this concentration 

level. The potential of the stripping peak for Hg obtained fol

lowing transfer of the electrode to the solution in the stripping 

cell, 1.0 M HgSO^ in TDW, was + 0.90 V vs. SCE, in agreement with the 

value obtained for deposition and stripping of Hg in the TDW blank, with

out transfer of the electrode. However, the potential of the stripping 

peak for Hg obtained in the same LSW sample without transfer of the 

electrode, i.e., with both deposition and stripping performed in the LSW 

sample, was + 0.78 V vs. SCE. This value represents a - 120 mV shift 

in the potential of the stripping peak for Hg. Chelation or complexa-

tlon of Hg(II) stripped from the Au electrode would cause such a nega

tive shift in the peak potential in a manner analogous to the process 

which causes the negative shift in the polarographic half-wave potential 

of a metal ion in the presence of a complexing agent (pp. 209-10 of 141). 

Although the peak potential was shifted - 120 mV in this latter experi

ment, the values for the peak current, measured ly the hori

zontal and sloping baseline techniques, respectively, were 92% and 97% 

of the values obtained for deposition in the same LSW sample and 

stripping In the TDW blank following transfer of the electrode. 
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Chelation of Hg(II) in natural waters has been Investigated by 

Krltsotakis, et al. (173), who determined the speciation of Hg(II) 

present at a level of 6.4 ppb in the water of the Ginsheimer Altrhein, 

a notoriously highly polluted secondary channel of the Rhein at Mainz-

Ginsheim, Germany. The authors ascertained that the Hg(II) was completely 

chelated in the original samples and remained 70% chelated at a pH of 3. 

The binding capacity of the water was 55 ppb Hg(II). Calibration curves 

2+ 
prepared from synthetic Hg solutions were found to be unsuitable for 

the determination of Hg(II) in this matrix, and the authors recommended 

application of the method of standard additions for the analysis of 

these water samples. Although the Ginsheimer Altrhein is more highly 

polluted than Lake Superior, the findings of these studies are likely 

applicable to other natural waters, with a reduction in the binding 

capacity of the water for Hg(Il). 

The sensitivity (pA nM of the analytical method described in this 

chapter was defined as the least-squares slope of the calibration curve 

of tHg(II)]. For the determination of Hg in TDW without 

transfer of the electrode and in LSW with transfer of the electrode, 

these sensitivities were 1.572 |jA nM ^ and 1.557 |JuA nM respectively. 

These values agree to within 1% relative, indicating that the complexa-

tion of Hg(II) mentioned previously did not affect the efficiency of 

deposition of Hg from the LSW onto the electrode. In addition, the 

agreement of these sensitivities indicates that loss of deposited Hg 

did not occur during the transfer of the electrode. 

The concentration of Hg(II) present in the LSW solution, as deter

mined by the results of the analysis summarized in Table IX-1, was 
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0.163 + 0.032 nM (32.8 + 6.4 pptr), with the uncertainty calculated at 

the 90% confidence interval. This value is equivalent to a concentra

tion of 34.7 + 6.8 pptr Hg(II) in the LSW prior to the addition of H^SO^, 

assuming that the H^SO^ contained no Hg. This latter assumption is 

false, however, and it is therefore necessary to know the true concentra

tion of Hg(II) in the in order to calculate the level present in 

the LSW. 

The detection limit for Hg(II) using this electrochemical method 

is 2 X 10 M Hg(II) (4 pptr), in the absence of the external contamina

tion noted above. This detection limit was defined as the concentration 

of Hg(II) which would produce a value of equal to twice the un

certainty of the baseline. Preliminary work with Electrode E in TDW 

solutions indicated a lower detection limit, 5 x 10 M (1 pptr); 

however, this electrode was inadvertently subjected to severe anodiza-

tion and was unsuited to further trace-level work following this un

fortunate incident. These detection limits are significantly lower 

than the detection limit of 1 ppb generally reported for cold-vapor 

AAS (165, 174-177) and are similar to the value cited by Hawley and 

Ingle (178) for an optimized version of the cold-vapor method. The 

detection limits for the vibrating electrode are 2.5 to 10 times lower 

than those cited for the same electrochemical method using a Au RDE 

and an equivalent deposition time (168) and 25 to 100 times lower than 

those found by Lindstrom (148) for the same method at a Au flow-through 

disc electrode. 
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E. Conclusion 

The vibrating Au electrode has been applied to the ultratrace 

determination of Hg(II) in LSW samples by DPASV. Using a deposition 

time of 600 sec, the estimated detection limit in the absence of 

external contamination was 2 x lO'^^ M Hg(II) (4 pptr), and linear 

calibration curves were obtained for Hg(II) concentrations from 0.37 

to 2.9 nM (74 to 590 pptr). Evidence has been presented which sup

ports the hypothesis that Hg(II) at these levels exists in LSW as a 

conplexed or chelated species; however, this complexation did not af

fect the efficiency of deposition of Hg onto the Au electrode. 

Problems associated with contamination of the reagents and glass

ware by trace Hg have been investigated, and the relative levels of 

Hg(II) present in analytical-grade H^SO^ obtained from different manu

facturers have been determined. The limiting factor in practical 

analyses was found to be the highly variable background level of Hg(II) 

present in the 1.0 M H^SO^ solutions employed in the analytical proce

dure. Similar background levels were observed using this electrochemical 

method both at this laboratory and at the laboratory of the U.S. Environ

mental Protection Administration at Duluth, MN. These results were also 

similar in magnitude to those noted in independent determinations of 

the background levels of Hg(ll) in LSW performed at Duluth, MN, using 

cold-vapor AAS, and similar random variations in these levels were 

noted with both methods. 

Standard solutions containing Hg(II) at concentrations below 1 tJM 

(200 pjpb) were found to be unstable upon storage for extended periods. 
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with the concentration of Hg(II) decreasing with the time of storage. 

This instability was attributed to the adsorption of Hg(II) onto the 

walls of the borosilicate glassware, in which the solutions were pre

pared and stored, and/or the loss of Hg as Hg(0) vapor following reduc

tion. found to be unsuitable as a preservative for samples 

to be analyzed by this method, but the presence of KMnO^ at low 

concentrations did not affect the deposition and stripping of Hg. 

Caution in the use of KMnO^ as a preservative is advised, however, due 

to the possibility of chemical stripping of Hg from the electrode during 

the transfer process. 

The analytical method described in this chapter is presently being 

applied at the laboratory of the U.S. Environmental Protection Administra

tion in Duluth, MN, in studies of the background levels of Hg present in 

Lake Superior water. Due to its electrochemical basis, this analytical 

method constitutes an ideal confirmatory technique, when applied in 

conjunction with the optimized cold-vapor AAS procedure developed at 

that laboratory. 
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X. CONCLUSION 

The design and construction of Au and Pt vibrating electrodes was 

presented. These electrodes were vibrated by means of a louspeaker at 

peak-to-peak amplitudes up to 3.3 mm and frequencies up to 510 Hz. 

Electronic instrumentation was described which permitted automatic 

recording of the limiting current as a function of the vibrational 

amplitude. This instrumentation also facilitated the use of hydrody-

namic modulation through sinusoidal, 10-Hz modulation of the vibra

tional amplitude or frequency, with phase-selective detection of the 

10-Hz component of the electrode current. 

Hydrodynamic transitions in the flow patterns prevailing at vibrating 

electrodes from Re^ = 0 to 150 were studied both visually and electro-

chemically. Visual evidence of such transitions was noted at Re^ = 11, 

ça. 25, 78, ça. 90, and 103, with evidence from the electrochemical 

studies for transitions at Re^ = 25 and 90. 

The exponential dependence of the limiting current on the vibra

tional amplitude was determined, with values from 0.5 to 1.0 noted for 

different electrodes. The exponential dependences of the limiting cur

rent on the vibrational amplitude and frequency for a given electrode 

were 0.620 and 0.664, respectively. Studies of the mass transport to 

vibrating electrodes indicated an improvement of at least 50% in the 

sensitivity of vibrating electrodes over RDEs of equivalent area. 

Detection limits of 4 x 10 ̂  M for Br", 1 x lO"® M for CrgOy", and 

2 X 10 ® M for Og were observed for a signal-to-noise ratio of 2 

using hydrodynamic modulation at a vibrating Pt electrode. These 
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limits were 10 to 100 times lower than the corresponding values ob

served In DC cyclic voltammetry at the same electrode. Background cur

rents noted at Pt electrodes using hydrodynamic modulation were at

tributed to dissolution of Pt from the electrode. 

The vibrating electrode was employed in flow-injection analysis 

for the determination of I". A detection limit of 5 x 10 M I" was 

demonstrated for a slgnal-to-noise ratio of 2, and a dynamic range from 

-3 -10 
1 X 10 M to 5 X 10 MI was observed. The method was applied to 

the determination of I in household iodized salt. Equations were de

rived which describe the performance of the vibrating electrode in 

flow-injection analysis for both steady-state conditions and plug in

jection of samples. The validity of the fundamental assumptions, upon 

which these equations are based, was evaluated. The equations were 

also predicted to be applicable to the RDE in flow-injection analysis. 

Hydrodynamic modulation at the vibrating electrode in flow-injection 

analysis was shown to discriminate against the charging current nor

mally observed at amperometrlc flow-through electrodes following a change 

in potential. 

Determinations of Hg(II) in Lake Superior water were performed at 

the part-per-trlllion level, using a vibrating electrode in differential 

pulse anodic stripping voltammetry with a deposition time of 600 sec. 

A linear calibration curve was obtained from 3.6 x 10 M to 2.9 x lO"^ M 

Hg(II) (74 to 590 pptr). The estimated detection limit for a slgnal-

-11 
to-noise ratio of 2 was 2 x 10 M Hg(II) (4 pptr). The limiting 

factor in the analytical determination was the highly variable back

ground level of Hg noted in the reagents employed in the procedure. 
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This background level was similar in magnitude to that noted in cold-

vapor atomic absorption spectroscopy, and similar variations in the back

ground level were observed with both methods. Standard solutions of 

2+ 
Hg were observed to decrease in concentration upon storage. The use 

of K2^^2^7 ^ preservative was found to be incompatible with this 

electrochemical method, but KMnO^ was suitable if present in the 

deposition solution at part-per-million levels. However, chemical 

stripping of the deposited Hg was shown to be possible in the presence 

of KMnO^. Complexation of Hg(II) in Lake Superior water was observed. 
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XI. SUGGESTIONS FOR FUTURE WORK 

The research for the Ph.D. dissertation generally raises more 

questions than It answers. Such Is also the case with the present work. 

In view of this fact, several avenues of possible future research 

are suggested below. 

The topic of the hydrodynamic flow patterns Induced by vibrating 

cylinders is extremely complex and could benefit from future research 

with vibrating electrodes. The exact relationship between the macro

scopic flow pattern Induced by the electrode and the nature of the 

microscopic diffusion layer should be investigated more closely. The 

frequency and phase responses of the diffusion layer should be studied 

in greater detail and at different Re^ values, and an attempt should be 

made to correlate the frequency and phase responses to the hydrodynamic 

properties of the electrode. The effects of minor changes in the 

geometry of the electrode on the hydrodynamic transitions should be 

investigated. The dependence of the 3-bumped graphs of Ij^ vs. Re^ 

on the vibrational frequency should be studied in greater detail, and 

the significance of the bumps should be elucidated. The variations 

noted between different electrodes are worthy of further investigation. 

The nonlinearlty noted in the calibration curves of Ij^ vs. is 

of basic Importance to the analytical application of vibrating elec

trodes and deserves closer study. Viewed from the perspective of 

Equation 1-5, it is likely that this nonlinearlty results from a 

failure of the basic assumption of this equation, viz., that the 

value of is zero at all points on the electrode surface. 



www.manaraa.com

263 

Construction of a smaller vibrating electrode would permit the 

operation of the vibrating electrode at higher frequencies and the use 

of a smaller flow-through cell in FIA. This smaller cell would de

crease the response time of the vibrating electrode in FIA. 

Application of a miniature RDE to FIA in a manner analogous to that 

employed with the vibrating electrode in the present work shows much 

promise for future work. Provided that the RDE displays the same hydro-

dynamic behavior in batch and flow-through cells, the value of k^ in 

Equations VII-9 and VII-14 could be calculated a priori using Equation 

1-8. The major problem with the RDE in this application is that it 

would have to be rotated at a very high speed to obtain the values of 

k^, and thus, the analytical sensitivities, attained with the vibrating 

electrode. 

Further investigation of the background currents noted in FIA and 

with hydrodynamic modulation at vibrating electrodes is of fundamental 

importance to the attainment of lowered detection limits for electro-

analytical determinations. It is most Important to ascertain the degree 

to which these currents result from contamination of the supporting 

electrolyte and to what extent they originate from other causes. 

Future application of the electrochemical technique described in 

Chapter IX for the ultratrace determination of Hg(II) in water samples 

should provide greater confidence in the results obtained from con

current analyses of the same samples by cold-vapor AAS. Also, the 

concurrent application of both techniques should provide more informa

tion regarding the sources of the Hg contamination noted in this work. 
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